
'A-ais mS A PLAN FOR COLLECTING ODR SOFTWARE DIVE OPMENT COST Aw

"5SCNERU. AND ENVIROUI . (U) TECOLOTE RE RCH INC SANTA
BARBARA CA N J BRENNER ET AL. 02 APR 37 CR-0134/1

WZXMSIFIEDESTR-7-6 F192-4- 19 F/12/ .

EEEEEEEomhEEEEE
EohhhmhmhEEmhI

Im

%

.A .f !

I. !

..-..-. ...-.. ., .-.<...., -.. --

e....

I _lI . -l'" I . .ll t

m

i lli i " m I 4I

t A I

___t l
! .I

.

- r.. -. 4

L. 32

2.0~

1.6.

M*4

Nk-

ESD-TR-87-167 CR-0134/1 1 1

A Plan for Collecting Ada Software Development
Cost, Schedule, and Environment Data

OTCFILE CO S
NEAL J. BRENNER

LO DANIEL D. GALORATH
DAVID G. LAWRENCE

J JUDY C. RAMPTON

4)0 Tecolote Research, Inc.
5266 Hollister Avenue, No. 301

(Santa Barbara, California 93111

2 April 1987

SELECTE
OCT12 1170

C4)P
h

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Prepared For

ELECTRONIC SYSTEMS DIVISION

AIR FORCE SYSTEMS COMMAND
DEPUTY COMPTROLLER
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

87 I)
V S N~~.

!U

LEGAL NOTICE

When U. S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

" THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION."

JOSEPH P. DEAN, Capt, USAF ELLEN M. COAKLEY
Senior Software Cost-Research Analyst Technical Director of Cost
Directorate of Cost Comptroller
Comptroller

FOR THE COMMANDER

DAVID G. KANTER, Colonel, USAF

Comptrol ler

Unclazsified

* SEC'URITY CLASIHCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1j REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Une ! iss jfied
28 ECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSiFICATION/DOWNGRADING SCHEDULE Approved for Public Release; Distribut ion

Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CR-0134 /1 ESD-TR-87-167

61 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7 a NAME OF MONITORING ORGANIZATION
(If applcable)

Tecolote Research, Inc. ELECTRONIC SYSTEMS DIVISION (ACCR)

L... ADDRE S (City. Stle, and ZIPCode) 7b ADDRESS (City, State. and ZIP Code)

5266 Hollister Avenue, No. 301
Santa Barbara, California 93111 Hanscom AFB

Massachusetts, 01731-5000

bs NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
OHGANIZA TION (if applcable)

Deputy Comptroller _ESD!ACCR_, F19628-84-D-0019
Sc ADDHESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Hanscom AFB PROGRAM PROJECT TASK WORK UNI I
Massachusetts, 01731-5000 ELEMENT NO NO NO ACCESSION NO

11 rIrLE (include Security Classficdaron)

A Plan for Collecting Ada Software Development Cost, Schedule, and Environment Data

12 PERSONAL AUTHOR(S)

NeIl J. Brenner, Daniel D. Calorath, David G. Lawrence, Judy C. Rampton

134 TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Oay) 15 PAGE COUNT
Technical FROM . .. TO 1987 April 2 162

16 SUPPLEMENTARY NOTATION

11 COSATI CODES IB SUBJECT TERMS (Continue on reverse it nece Jr y nd identify by block nu'iber)

FIELD GROUP SUB.GROUP

% Ada Software Data Collection

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Thib document identifies the data elements that need to be collected and methodologies to be
used when developing an Ada Software Cost Database. It presents various data collection tor-
n:ats that can be used for data collection and cross references the data elements with
LSD 'ER-87- 166.

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
0U NCLASSIfD/UNLIMITED P SAME AS RPT O'DTIC USERS I IF "f .

12a NAME OF RESPONSIBLE INDIVIDUAL .. 22b TELEPHUNE (include Area Code)7 22 OFFICESYMBOL

Joseph Dean, Captain, USAF (617) 377-2679 ESD/ACCR

DO FORM 1473, B4 MAR 83 APR edition may be used until exhausted SECRITY CLASSIFICATION OF *HIS PAGE
All other editions are obsolete Un I dS 1 fied

Un asife

SUMMARY

The DoD has supported the Ada programming language and Ada Program

Support Environment (APSE) to enhance the state of the art of software

engineering, produce more reliable software, and reduce overall software

life cycle costs. However, at the time of this report, the complete cost

ramifications of Ada and the APSE are uncertain.

This report identifies data that can be collected and used to

measure the impa-t Ada has on the cost of developing military-standard

software. Several potential cost driver impacts and issues have been

identified. They are:

* The time spent in design will probably have a greater impact on

Ada projects than non-Ada projects. Good designs may reduce

errors and increase reliability. Incomplete or ambiguous designs

may cause project failure.

* The allocation of costs to phases in the life-cycle of an Ada

project may differ from projects using other languages.

(Requirements and design costs phases will probably be higher.)

e Modern software engineering practices may be more critical in Ada

developments. Medium- to large-scale projects developed without

good software engineering practices may cost significantly more.

9 The Ada language and tools may take longer to learn than prior

development environments. The formal training level may be a

more significant cost driver than traditional Fortran environ-

ments.

* Reusability requirements may impact both the use of preexisting

software and the development of new software intended to be

reused.

%''b'~- -. - % %........ .'

9 . S S -

o Just the use of certain Ada language features may impact project

costs disregarding other development or engineering changes.

d

o Ada Programming Support Environment (APSE) productivity tools may

actually contribute more to cost differences than any other

factor.

o Language and tool maturity may impact Ada projects for the next

five years or more.

9 Data collected on experimental Ada projects may be unduly influ-

enced by the personnel and the fact that the project is being

closely monitored (the Hawthorne effect).

This task was completed using the following steps. First, a litera-

ture search was performed as described in section 3. Next, an interview

questionnaire was created to be used as a basis for interviews with soft-

ware modelers, Ada software engineering experts, and Ada project managers.

Their responses to the interview questions, detailed in sections 4 and 5,

expanded the issues and impacts determined from the literature search.

Then, the Ada cost driver issues and impacts were used to modify

existing data collection packages to be used to draw out the Ada cost

impacts.

Candidate Ada projects were located via the interviews and contacts

with Ada coordination groups. These projects range from small to large in

scale and include new projects, reimplementations developed primarily to

better understand the Ada impacts and experimental, non-mission-critical

projects.

The attached data collection plan defines specific steps to be taken

during on-site data collection during the next phase of this effort.

Included are: types of project personnel to be interviewed, documents to

be reviewed, data validation methods, etc.

iv

Additionally, we recommend a tools study be performed to identify

available APSE tools and quantify their individual characteristics and

performance. The final deliverable of the tools study would be a compara-

tive evaluation in the form of a consumer's guide. This guide would pro-

vide the information for the government and contractors to make informed

choices and selections of the most appropriate tools.

'JP'

7

. YA:Ccs~oi For

r,,,;: TAB "
4.J

J .I : C:;:,.

' :AF3

IC

s~N. a,

11 Iti
I
!

I
l l !

I
1 i* II 1 I"1 "I .'1." "II " I ! i- I . - - "

I
. 11 I* I

!
• I . . .

ACNOWLEDGMENTS

The majority of the work on this report was performed by

Daniel D. Galorath, David G. Lawrence, and Judy C. Rampton, all

of Computer Economics, Inc.

We appreciate the time and consideration provided us by the

respondents during the somewhat lengthy interview process. We

thank Dr. Randall Jensen for his work on the data collection

forms and Carolyn Gannon for her review of the entire report.

I

viiI

I'.

.1
.1
'I

t-.

PD

U,

£.V

CONTENTS

.

* SECTION PAGE

I INTRODUCTION
i.1 SCOPE ...
1.2 PROCEDURE ...
1.3 DEFINITIONS ... I

LITERATURE SEARCH ...
2.1 LITERATURE SEARCH PURPOSE
2.2 LITERATURE SEARCH SOURCES 3

3 INTERVIEWS 5
3 1 INTERVIEW PURPOSE 5
3.2 INTERVIEW PROCEDURES 5
3.3 GENERAL INTERVIEW RESULTS 5
3.4 INDIVIDUAL INTERVIEW SUMMARIES 6

3.4.1 EXPERT A 7
3.4.2 EXPERT B 8
3.4.3 EXPERT C 9
3.4.4 EXPERT D 10
3.4.5 EXPERT E 10
3.4.6 EXPERTS F, G, AND H1
3.4.7 EXPERT I 12
3.4.8 EXPERT J 13

EXPERT K 13

3.4.10 EXPERT L 14
3.4.11 EXPERTS M AND N 14
3.4.12 EXPERT 0 17

ADA COST DRIVER IMPACTS AND ISSUES I()
4.1 PURPOSE ... 19
4.2 DESIGN AND DEVELOPMENT
4.3 COST IMPACTS .. 21
4.4 SOFTWARE ENGINEERING METHODS 9?
4.5 IMPACT OF EXPERIENCE, CAPABILITY, AND TRAINING 23
4.6 REUSABILITY ISSUES 24
4.7 IMPACT OF LANGUAGE FEATURES 25
4.8 IMPACT OF AN ADA PROGRAMMING SUPPORT

ENVIRONMENT (APSE) 26
4.9 MATURITY ISSUES 26
4.10 DATA COLLECTION ISSUES
4.11 ITEMS RECOMMENDED FOR DATA COLLECTION

5.RECOMMENDATIONS FOR ADDITIONAL RESEARCH 31

-px

"I , ." - , .v ','. ,,. ' .V ''''' " , """" " .". "- . --. .-. -; . .' . . . "

CONTENTS (Continued)

SECTION PAGE

DATA COLLECTION FORM STRATEGY AND CROSS-REFERENCE
TO ESD FORMS .. 33
6.1 OVERALL CHANGES WITHIN FORMS 33

6.1.1 MIL-STD 2167 TERMINOLOGY WITHIN FORMS 33
6.1.2 RANGES OF VALUES WITHIN FORMS 33
6.1.3 ADDITIONAL COST DATA TO SUPPORT CURRENT

COST MODELS 33
6.2 ESD FORM ABBREVIATIONS 34
6.3 SOFTWARE DEVELOPMENT PROJECT FORM CROSS-REFERENCE... 34
6.4 SYSTEM LEVEL OR CSCI LEVEL DOCUMENTATION FORM

CROSS-REFERENCE 37
6.5 DEVELOPMENT COMPUTER SYSTEM AND TOOLS FORM

CROSS-REFERENCE 38
6.6 TARGET COMPUTER SYSTEM FORM CROSS-REFERENCE 41
6.7 COMPUTER SOFTWARE CONFIGURATION ITEM FORM

CROSS-REFERENCE 43
6.8 RESOURCE EXPENDITURE DATA CROSS-REFERENCE 48
6.9 COMPUTER SOFTWARE SIZE CROSS-REFERENCE 49

BIBLIOGRAPHY .. 50

APPENDIX

A QUESTIONNAIRE ... A-i
B RESPONDENTS ... B-I
C DATA COLLECTION FORMS AND INSTRUCTIONS C-i
D DATA COLLECTION PLAN D-I

F . ', -i-. -" - - ' . . ' .- .' ., ',- - ' - , . . ,

INTRODUCTION

- 1.1 SCOPE

The scope of the research described in this report is to determine

the issues and impacts of using Ada for military-standard software develop-

ment and how to measure those issues and impacts.

1.2 PROCEDURE

The first step was an extensive review of Ada literature for cost

driver impacts and issues.

Next, an interview questionnaire was built and personal interviews

were conducted with software modelers, Ada software engineering experts,

and Ada project managers. Their responses to the interview questions

expanded the issues and impacts determined from the literature search.

Then, the Ada cost driver issues and impacts determined during the

literature search and personal interviews were used to create new data

collection forms. These forms are intended for use during the next phase,

actual data collection.

In anticipation of the next phase, a list of Ada projects was com-

piled, showing candidates for Ada collection based on information provided

by interview respondents or contacts with Ada coordination groups. A data

collection plan was developed which defines specific steps to be taken

during on-site data collection during the next phase of this project.

1.3 DEFINITIONS

Ada

A high-level programming language designed in accordance with the

requirements of the Department of Defense. Certain features were borrowed

from such modern programming languages as Pascal. It has been designated

by the Department of Defense as its official computer language.

[p

[-* 2- - - - - - - - - - - - - -- -

APSE

During Ada's development, it became apparent that special-purpose

software tools and resources vere needed to provide support for Ada appli-

cations programs. These tools and resources, called an "Ada Programming

Support Environment" (APSE), consist of an integrated set of tools, data

base facilities, and control interfaces.

Cost Driver

A factor having an impact on the cost of accomplishing or predicting

the cost of a task.

IRAD

Abbreviation for Internal Research And Development. Used to

describe a project funded internally by a contractor for research purposes.

IRAD projects are not usually subject to military standards.

PDL

Abbreviation for Program Design Language. A formalization of the

use of pseudocode.

S

.I

..........

LITERATURE SEARCB

2.1 LITERATURE SEARCH PURPOSE

The purpose of the literature search was twofold: first, to obtain

current assessments and findings relative to Ada software cost estimating

approaches, models, and techniques; second, to obtain recommendations

relative to Ada cost drivers which should be identified in the Ada Software

Data Collection Formats.

2.2 LITERATURE SEARCH SOURCES

To accomplish the literature search, the following sources were

searched for pertinent information:

* Ada Clearinghouse

* Data Analysis Center for Software

* Defense Technical Information Center

* Dialog Information Service

" Internal Libraries

" International Society of Parametric Analysts Library

* National Technical Information Service

" Scientific and Technical Aerospace Reports

* Space System Cost Analysis Group Library

* UCLA Engineering Library

Relevant works are listed in the bibliography.

3

-'" " .

INTERVIEVS

3.1 INTERVIEW PURPOSE

With any relatively new and rapidly advancing technology, published

material lags the actual experience of those "in the trenches." The pur-

pose of the interviews was to expand and enhance the data gathered by the

literature search to reflect this experience.

3.2 INTERVIEW PROCEDURES

A questionnaire was prepared for use as a basis for the interviews.

A copy is attached to this report as Appendix A. Interviewers were allowed

to depart from the prepared questions when deemed necessary based on the

respondents' experience and prior answers. Interviews lasted between one

and two hours and were conducted both in person and by telephone.

3.3 GENERAL INTERVIEW RESULTS

The interviews proved a valuable source of information. Even though

responses ranged from extremely positive to very negative, the issues of

concern to the respondents were surprisingly uniform. Responses were also

consistent among those with similar backgrounds. Respondents seemed to

fall into one of three schools of thought regarding Ada:

" The Ada language and tools are a major advancement of

software engineering.

" Ada is just another programming language.

" Ada will never have much impact.

Software cost and schedule modelers tended to be very middle-of-the-

road In their responses. As a group, they indicated interest in the tradi-

tional software metrics and desired to see data similar to that available

in the past. Present software models were judged adequate for Ada estima-

tion with the provision that some of the parameters be modified slightly

based on Ada experience.

40

-V

Respondents with hands-on experience ran from wildly enthusiastic to

extremely negative. One respondent said Ada's success would be furthered

if DoD would quit granting waivers, while another thought DoD should give

up on Ada entirely. The most negative responses often came from those

viewing Ada as just another language.

Positive responses were more often received from those with more

sophisticated tool sets, such as the Rational environment. Some respond-

ents commented on the need for a different overall method of developing

software than typical Fortran developments, including additional concen-

tration on data and increased design formality when dealing with Ada

development. These respondents insisted that once this Ada experience base

is achieved, Ada can be use effectively.

The response to the applicability of Ada to various program types

could be predicted based on the respondent's experience with Ada. Those

with positive experiences stated it could be used successfully with almost

any application. Those respondents having negative experiences saw Ada as

useful for only a limited amount of applications, typically non-real-time

applications.

The feature of Ada most distressing to the respondents group was the

Ada tasking provisions. The most negative felt they would never work,

while others were of the opinion that the tasking features just needed

maturity.

Overall, strong responses in either direction seemed to follow the

respondent's initial conceptions. If the respondent anticipated problems

in a particular area, he usually found them. Respondents who approached a

problem from the viewpoint of making it work usually received better than

expected results.

3 .4 INDIVIDUAL INTERVIEW SUMMARIES

This section summarizes the interviews. It attempts to capture the

overall tone of the individual interviews in a few sentences. The names of

% 6

the experts have been removed and the job descriptions made vague to hide

identities. The attributed interviews are in Appendix E of this document,

delivered under separate cover. Appendix E is not for distribution.

3.4.1 EXPERT A

Expert A, a Chief Engineer for a major defense contractor, is also

the author of a well-known software development cost and schedule estimat-

ing model.

The immediate result of using Ada on most large software projects

will be to increase costs due to immature software tools, poor support

environments, and costs of training. The major productivity gains will

probably come from the environment rather than the language. In the long

run, Ada-related gains will be typically 30 percent for development and

50 percent for life cycle support.

The software development life cycle will probably change, with more

effort spent in design and less required later in the cycle. Failing to

provide adequate time for preliminary or detailed design could have greater

negative impact on an Ada project than a project using another language.

Requiring software to be reusable may increase development costs 5

to 30 percent. However, reusing code written in Ada should be cheaper than

reusing Fortran code.

A new standard is needed for counting lines of code in Ada.

The "wave" of desire for reusability was occurring at the same time

as the Ada "wave."

Writing reusable code will be easier in Ada.

Who will be responsible for the maintenance and support of reusable

code?

7

r W r . W, e.

d ~j -W -vw V -

Attempting to compile the PDL prior to critical design review (CDR)

is generally not productive, concentrating on language syntax and not

design.

Graphical design tools will be helpful.

Include schedule constraints data in the data collection, particu-

larly on the up-front design phase.

3.4.2 EXPERT B

Expert B is an independent consultant and an educator specializing

in Ada-related courses.

Anyone with an aptitude for programming can learn to program in Ada.

Ada goes hand in hand with good design. Its structure helps enforce good

design principles. Since properly developed Ada is so entwined with de-

sign, design and implementation will merge. Thus, design will become high-

level implementation and implementation will become low-level design. Ada

is not tied to any one design method, but to the common principles of any

good design method (good design methods clearly define the problem faced,

data inputs and outputs, and the solution).

Current implementations of the Ada tasking model seem to be ineffi-

cient for some mission-critical application areas. Reliance on current

operating systems interfaces has decreased portability to some extent.

We don't know enough about tools to standardize today.

Ada's strong typing and generics features will impact costs.

To speed Ada's acceptance, the Government must stop granting

waivers.

While there are no good metrics to measure language training, the

enthusiasm of the staff for the Ada language will have a positive effect.

The core of the Ada language (Pascal subset plus exception handling)

is easily learned by almost any software developer.

Design and implementation will merge, design becoming high-level

implementation and implementation becoming low-level design.

"We don't know enough about tools to standardize."

3.4.3 EXPERT C

Expert C is an Air Force expert on Ada.

Ada projects will cost more over the next two years due to inexperi-

ence and tool immaturity. On small projects, Ada won't be much different

than what we have now. Large projects will benefit more when Ada matures.

Ada can be applied to a wide application domain. At first it will

be more successful with non-real-time applications. It will take time for

embedded applications to be adequately supported by optimized compilers and

tools.

It will be a while before many language features are used

extensively.

Strong typing will reduce some coding errors; however, design errors

will not be reduced by the language constructs themselves. These design

errors will be detected earlier in the development phases.

Managers will suggest the use of language subsets to avoid

inefficiencies in compilers or operating systems.

Ada is a reader's language.

Compared to other languages we are using, writing reusable code will

Ib

I

Designers need familiarity with Ada.

Ada PDLs will speed coding. Current tools are not of the quality

expected in production environments.

"We suffer with any new technology."

3 .4.4 EXPERT D

Expert D is a Systems Engineer with a major computer and software

company.

Ada is more readable and maintainable right now, when software per-

sonnel are dedicated to these goals. Ada should yield less errors per line

of code due to compiler features that find errors early in the development

cycle.

Ada-like tool sets can help any language. The point is that Ada

tools are a planned set. Thus they will likely be more cohesive.

Management will be helped by management tools that run within the

Ada environment. These tools will be able to extract management data from

Ada's data base.

Ada can make "design on the fly" easier for small projects since

stubs are convenient.

Programmers should constrain any machine dependencies to a few

packages. Thus, most Ada code will be portable.

Type statements will reduce costs considerably by eliminating range

errors.

1.4.5 EXPERT E

Expert E is a Senior Software Cost Research Analyst for the Air

Force and formerly worked as a software engineer.

.69

ST

Ada sizing is difficult since the definition for lines of code is

unclear.

Ada training requires about three months with typical people.

Requirements and preliminary design specifications should be

language-independent. Ada as a PDL is appropriate after preliminary design

review (PDR).

We should see different effort loading and schedules when Ada is

used. Violating Brooks' law (Brooks' law states adding more people can

impede project performance) may be possible during the coding phase, due to

Ada's structure. However, such an overloaded coding staffing plan doesn't

make much sense, because testing must be performed with the same staff

levels as non-Ada projects.

Additional data needed includes: similarities and differences in

tools and compilers between contractors and subcontractors, funding avail-

ability, and program stretch-out issues. Additionally, more information

regarding rehosting and reuse factors is needed.

3.4.6 EXPERTS F, G, AND H

These respondents all work at an Air Force base and are deeply

involved an Ada development. Expert H is the Director, Expert F the Lead

Engineer, and Expert G a Staff Engineer. They were interviewed as a group.

If code is not reusable, Ada may be more costly due to the diffi-

culty of writing in the Ada language. So far, Ada has not been able to

meet the embedded system requirements due to poor implementation of tasking

functions and large object code sizes.

Embedded system reusability should be built into the hardware (e.g.,

firmware) rather than as reusable software. If you specify reusability,

the result will probably be inefficient when embedded system requirements

must be upheld.

ll

Current Ada development systems _an take hours to recompile when one

minor code change is made. Thus, a large machine may not be able to sup-

port more than three programmers. Therefore, a large project might require

a large capital investment in software development computer systems.

Ada is very readable. It is easier to read than to write. This

should simplify maintenance.

3.4.7 EXPERT I

Expert I is a Chief Scientist at a major defense contractor and the

author of a well-known software cost and schedule model.

Short term, the Ada learning curve will have a major impact. Long
term, if source code size is constant, Ada may reduce costs somewhat. Long

term, size and cost will remain similar to other languages. Ada is a "good

language," but not a panacea.

In an internal experimental project, source code size doubled and

productivity increased. However, the increased productivity was not enough

to offset code size increases. These results may be skewed because work

was performed by an Ada Research Group in a monitored environment. On any

initial experimental projects, Ada can become the goal and not the tool.

Programmers can become enamored with the language, detracting from getting

the job done.

Use of Ada should provide fewer interface and system problems, but

Ada methods will have the greatest impact. Using Ada before PDR is not

practical. Designers need pictures (i.e., data flow diagrams, etc.) to

convey system concepts. Lack of adequate system design prior to employing

an implementation tool like Ada can be detrimental to both software devel-

opment and maintenance. Ada's support environment will take four to five

years to mature.

The use of modern methods will provide most of the gains attributed

to Ada.

i 12

io -

Who will be responsible for maintenance and support? This question

refers to determining both who will bear the cost and who will supply the

skilled people. Given the turnover rate of enlisted personnel, they will

not be able to develop the experience needed to master Ada.

Existing software cost estimation models can estimate the cost of an

Ada project as well as any other project.

We should collect data on the number and type of tools used on a

project. Also, terminal response time might become a driver when heavy

APSE use is required.

3 .4.8 EXPERT J

Expert J works for a well-known firm that markets a software cost

and schedule estimation model.

Short term, Ada will be more costly, perhaps as much as 30 percent

more than later projects. The APSE cannot be fully forecast, since it is

one to two years away. (Fortran required ten to fifteen years before tools

had impact, but with Ada it will take much less time.) Using Ada as the

PDL will lower costs. For this expert's model calibration and estimation,

a constant expansion ratio should be used for the conversion of object

instructions to source lines of code.

Data that should be collected includes: source and machine level

instructions, application, schedule (by phase if possible), reliability,

platform, cost, personnel quality, preexisting design, any complicating

factors, and concurrent hardware development.

3.4.9 EXPERT K

Expert K is an engineer and computer scientist.

Using Ada should reduce costs up to 20 percent for projects greater

than 1000 lines of code. Ada requires clear, concise, and unambiguous

specification.

13

. . . " : -.'. ..-- .-.;.... - . ,. , . - . -. .- -.. ... • -.- . . "

"You can't fake Ada." You must have a design layout from top down

or you can't develop Ada well. If Ada is not used as a PDL, costs will be

higher. Ada should be applied after requirements are baselined. A bad
0 specification will cost more if the project is in Ada than in other

languages. When Ada is used as a PDL, the design actually becomes the

code during implementation rather than requiring another complete trans-

formation.

Failure to develop a good design may cause a project to fail

completely.

Ada design errors are more difficult to correct during later phases

than for other languages.

Not many people know how to test an Ada job. The relationships
between stimulus and response are not completely understood.

Ada trends: Cost of documentation will drop, productivity will jump

3 to 1, the error rate will drop (design errors, also), reusability will be

a significant driver.

Portability can be difficult if I/O is involved, since machine

dependencies may come into play.

Staffing should be about 80 percent of a Fortran project. It is

better to "back off" staff and stay "lean and mean."

Management can be a key driver of Ada projects. There is more

potential for management errors. It is especially important to control

the design architecture and visibility among modules.

3 .4.10 EXPERT L

Expert L is the Avionics and Weapcns Systems Integration Tactical

Software Engineering Manager for a major defense contractor.

14

..................

Initially, costs will be higher, due in part to the immaturity of
tools. Any implementation of a new language has problems. Costs should be

better in time.

Ada will be used much more for large-scale, ground-based systems

where timing is not critical. Tools are not currently mature enough for

airborne embedded applications; therefore, current projects tend to.,Irds

large-scale implementations.

Machine code to source expansion ratios are extremely difficult to

estimate at this time due to the wide variety among compilers and differ-

ences in run-time libraries.

Ada is just another language, with similar types of tools being

adapted to other languages. Ada is really a manifestation of computer

science coming of age.

Tasking provisions are inadequate. There is no way to tie tasks to

an event priority. Pragma are not enough. Also, there is no way to

require maximum delays.

Portability problems have occurred with validated compilers. Port-

ability is in the hands of compiler implementors. Compiler writers are not
understanding contractors' needs regarding throughput and problem resolu-

tion response time. However, Ada should be more portable than other

languages due to the compiler validation process.

Initial results with Ada will not be skewed by use of the best

people, since many companies don't consider Ada significant enough yet to

allocate best people.

The better the Ada coders, the fewer the lines of source code that

will be produced. Projects need more people who have a higher overall

(design) view of an Ada project and fewer straight coders.

I V.

It's unsure at present if development time will be lessened by using

Ada unless the project can take advantage of reuse. There may be more

design and less coding, with no impact on testing or integration.

On reuse: Initially it will cost more to write software that is

generic--the level of documentation is higher and functionality is more

general. The overall impact will be beneficial for big contractors who

build their own internal reusable software.

Poor quality specifications are expensive regardless of implemen-

tation language, and this is probably the same with Ada. However, Ada will

point specification problems out earlier.

Using Ada as a PDL will keep costs lower. Ada should be applied to

a project after PDR. Ada does not require any design aids, but they can be

helpful.

The level of testing is important. We will NOT experience reduced

test time with Ada.

Several features of the Ada language will have cost impacts:

tasking, overloaded operators, test costs, and lack of traceability for

debugging. Debugging will be more difficult because of the unexplored

relationship between source, assembly, and machine code.

The cost of buying hardware and tools for development, and the fear

of contract penalty costs, will impact overall Ada costs.

Projects in other languages should not be rc' -rted to Ada. The

industry needs more language interfaces, especially to Jo'>41 'is will

allow reuse of "proven" code, particularly on embedded systems.

Additional useful data includes documentation page counts and levels

thereof; also, the specification level requested in the RFP, first which

military standard, then what tailoring.

II I

3 .4.11 EXPERTS M AND N

Experts M and N market a well-known software cost and schedule

model. Expert M developed the model.

A

Because Ada is a big, complex language, it will have a steep learn-

ing curve; thus, short-term cost increases. stimations of Ada projects

are similar to Pascal and PL/I. During the 1990s, reusability will become

a significant cost reduction factor. Long term, additional reliability may

be achieved due to reuse of fully tested reused software.

Standard Ada tool sets will be used by the more disciplined software

organizations. They do well with any new technology. Ada must grow to the

full APSE. This may be a stumbling block if it doesn't.

Ada may lend itself to some edule compression due to parallelism

during implementation of package design..

More high-quality data is needed. Additionally, iterative cost,

time, environment, people, and system data should be collected. These

should include actual staffing and resources by month, by labor category.

Additionally, the monthly defect pattern (rate and cumulative), by

severity, is needed.

1.4.12 EXPERT 0

Expert 0 is a Senior Staff Engineer and the Principal Investigator

for the Ada C3 IRAD for a major defense contractor.

The potential of Ada is very positive. Overall, costs can be sig-

nificantly reduced with proper use of Ada. However, there is extra cost in

the early development. Testing of code has moved to testing of design.

The design phases are critical, with coding trivial. Integration is no

longer the driver. Ada as a PDL is a natural evolution. Ada makes proto-

typing easier. Ada should be applied to a project from the beginning.

W
':F

II

Ultimately, Ada will be usable for all types of projects.

Currently, 1750-based avionics projects are difficult due to performance

and memory constraints (compiler immaturity). Compilers should become

available to solve these problems.

The biggest problems are tasking and reusability.

Ada promotes more reliable software. Ada projects may be able to

violate Brooks' law (increase staffing after PDR by assigning packages to

different groups).

Size in lines of code will decrease with Ada as compared to Fortran.

It is clear that an Ada line does a lot more than a Fortran line.

PDR and CDR schedules should require 20 percent more time than

Fortran or Jovial projects. However the code, unit testing, and integra-

tion are reduced dramatically. The language itself provides more produc-

tivity by uncovering errors earlier in the life cycle. However, the most

improvement comes from use of the APSE and modern software engineering

techniques.

Software life cycle and development costs can be reduced now with

the use of Ada and a good compiler. The impact on development productivity

(lines/man-month) is hard to predict, because both size and effort will be

less. For example, if for implementing a specific capability in Ada vs

Fortran the effort is decreased by x percent and the lines are decreased by

2x percent, the cost falls but so does the productivity. Thus, the idea of

increased productivity refers to "absolute work" productivity.

Success with early projects may be somewhat skewed due to applica-

tion of best people, but future projects will benefit from the experience

of "superstars" for good ground work.

The number of data types and number of data objects would be

interesting as a sizing metric.

5.

%1

,', S.

'

Ada COST DRIVER IMPACTS AND ISSUES

,. 1 PURPOSE

The purpose of this section is to discuss the major Ada cost driver

issues and impacts identified. These impacts and issues are the key influ-

ences in the modification of the data collection forms.

.2 DESIGN AND DEVELOPMENT

Almost all respondents identified the design phase as being espe-

cially important to a project using Ada. The only difference is the degree

to which they feel design is important.

Several experts feel that the design phase is critical to the devel-

opment. Some experts feel that failure to develop a good design may cause

a project to fail completely. One expert reminded us that a bad design can

cause serious problems in non-Ada implementations.

Ada design errors are more difficult to correct during later phases

than for other languages. In particular, the practices of "tuning" or

"patching" during integration are more difficult and time-consuming. This

is due to the interdependencies enforced by the compiler and the promotion

of top-down design by Ada (Chang-841. There also may be more potential

payoff in improving the efficiency of analysis and validation methods than

in speeding up the coding activity {Boehm-82J.

Changes in the software development life cycle were also projected.

In general, design will become more important and take longer. One expert

suggested that PDR and CDR schedules should increase by 20 percent over

Fortran or Jovial projects, with dramatic reductions in the code, unit

test, and integration schedules. One expert felt that failure to allow

extra time for the design of an Ada project would have an inversely propor-

Ntional impact on project costs.

Ii". "- .' -..' . ," ". .- -. . .. , . .". , , .. -- . ,
-LA- I,'- . . € e ' " " %%' " .. - ' ... /. ..-. -'.,

In addition, most respondents feel using Ada as a PDL will aid the

transition from design to implementation, eliminating one translation. Two

experts see Ada being used today as just another language, due to tool

immaturity. They do feel using Ada as a PDL may reduce costs by locating

errors earlier in the development cycle. They added that any standard

pseudo-code would be helpful in this regard.I A third feels designers need familiarity with Ada. Also, he stated
Ada PDLs will speed coding. A fourth goes even further, stating the design

and implementation will merge, design becoming high-level implementation

and implementation becoming low-level design. A fifth agrees, saying the

design becomes the code.

One expert is opposed to the use of Ada as a PDL prior to PDR. He

feels a more visual representation of the design (i.e., data flow diagrams,

etc.) is necessary at that point. A second feels that attempting to com-

pile the PDL prior to CDR is generally not productive, concentrating on

language syntax and not design. He also mentioned graphical design tools

will be helpful.

Ada may allow schedule compression due to greater parallelism during

the implementation of package designs. Two experts pointed out that it may

be possible to violate Brooks' law after PDR or during coding, but one

pointed out that this may not be a wise staffing plan, since test staffing

levels will be the same as non-Ada projects.

One expert stated, "Nobody knows how to test an Ada job." He feels

the relationships between stimulus and response are not completely under-

stood. Another agreed that the level of testing is important. He was

adamant that test time not be reduced. The amount of time spent in test

correcting problems may be one measure of the quality of the design

[Newell-85J.

20

4.3 COST IMPACTS

Most respondents expect Ada's goal of reduced costs to be met once

the Ada development environment matures. Initially, almost all respondents

said Ada projects will cost more.

Two reasons often given for increased early costs are staff inexpe-

rience and inadequate tools (an issue also raised at the AdaJUG meetings).

There will be costs for education and inefficiency until the staff becomes

fully productive. The length of time required for recompilation when a

minor change is made can require hours. Thus, a large capital investment

may be required to support an Ada development. Also, design and testing

tools are few.

Several respondents believe Ada will never offer any advantage over
prior languages. Several stated Ada may be more costly if code is not

reused, due to the difficulty of writing in the Ada language, while another

expects Ada to mostly benefit large projects. He said Ada use on small

projects will not differ much from current experience with other languages.

According to those respondents seeing reduced costs for Ada proj-

. ects, the savings will occur after CDR. Therefore, costs allocated to

design effort are expected to take a larger portion of the overall cost.

One said his experience (a small project without military-standard docu-

mentation requirements) showed coding became trivial and integration was no

longer a driver. Another said effort will be much more front-loaded.

Reduced costs later in the development cycle may be attributed to

the fact that the cost to fix errors increases with the stage in the life

cycle at which it is fixed (Hamer-85 and Wallis-851. One experience seems

to indicate that errors are located earlier. Another also mentioned he

believes Ada will reduce effort at the "back end."

Ada's potential impact on maintenance costs is a split decision,

with some of the respondents seeing increased cost and others less cost.

Two called Ada "a reader's language." However, concern over the ability of

22

maintenance personnel to handle the complexity of the language was most

often cited as a reason for increased cost. Also, maintenance staff turn-

over was identified as a concern, giving them less time to develop an

understanding of the code.

Those foreseeing reduced maintenance costs feel that Ada allows a

more direct relationship between design and implementation, making the code

easier to understand, especially when Ada is used as the PDL. Increased

readability due to Ada's English-like constructs is also advanced as a

reason maintenance costs should be lower.

A couple of modelers think that current models can be used to esti-

mate the cost of Ada developments. Estimations of Ada projects are similar

to Ada and PL/I. (At the AdaJUG meetings, a number of Ada users do not

know how to estimate the cost of Ada projects.)

4 .4 SOFTWARE ENGINEERING METHODS

The role of modern software engineering techniques may be greater

with Ada projects. Ada features alone do not ensure good software develop-

ment practices. In fact, Ada's very power generates more difficulty in

making design decisions. Methods that aid engineers in the allocation of

function and data structures are beneficial [Roy-85].

One modeler believes the use of modern methods will provide most of

the gains attributed to Ada. An expert views modern design methods with

Ada as a coincidental coming of age for computer science.

Some believe traditional milestones may no longer be appropriate for

Ada or accurately reflect the actual state of the project. For example,

CDR may be harder to pin down. More design details might be left to be

finalized during implementation.

The criteria for meeting milestones might be different with Ada

projects. Suggested milestones include noting the point in the software

life cycle when all the packages are named, when all procedures are named,

22I

h- -~~. ., i. . . -. . . . - - ,' o ,, -- p. w w w.

9 rL

when the type statements are identified, and how many objects are defined

at those times. If milestones are changing, managers may need to respond

to those changes. (This has been mentioned at AdaJUG meetings.)

Some respondents suggested that managers accustomed to experiencing

the most difficulty during integration phase might push staff toward inte-

gration prematurely. This will force the design phase, felt to be critical

to the success of an Ada project, to be abnormally shortened. This could

create exactly the integration problems that the manager had been attempt-

ing to avoid.

,.5 IMPACT OF EXPERIENCE, CAPABILITY, AND TRAINING

Staff experience, capability, and training may have more cost impact

on projects using Ada. Almost without exception, respondents stated modern

programming techniques and concepts will be more significant than prior

experience with other, more procedural languages. When offered a choice

between a recent college graduate with training in structured techniques

and Pascal or experienced Fortran personnel, most opted for the recent

graduate.

Also, since Ada is a relatively new language and APSEs are still

evolving, there is not a body of trained personnel. For the foreseeable

future, many projects will require staff training. One Ada teacher stated

there are no good metrics to measure language training, the enthusiasm of

the staff for the Ada language will have a positive effect.

In addition, most respondents feel Ada requires more experience than

other languages before personnel are proficient. It is a split decision as

to whether Ada syntax is more difficult to understand than other languages.

However, it is generally agreed that it will take longer to appreciate the
trade-offs in determining which feature of the language is best to imple

ment a particular algorithm.

Most respondents stated that Ada will take longer to learn than

other languages, although personnel should be able to produce Ada project,"

we9

'4

= I w " , : ' - . -". - . .. " .. '.. '. .- .. .-

before mastering all the language features. Not only is the language felt

to be richer, but the tool set is more complex. This may increase the time

to proficiency even further, impacting first, second, and even future proj-

ects until a "fusion" point is reached. However, one feels that anybody

can learn a "base" Ada subset that may be used to implement almost any

software function.

.6 REUSABILITY ISSUES

One of the great hopes for Ada is that future software will take

advantage of previous, reusable components, lowering development costs.

One expert noted the "wave" of desire for reusability was occurring at the

same time as the Ada "wave." Unfortunately, according to the respondents,

just using Ada for development does not assure reusability. However, two

experts feel that writing reusable code will be easier in Ada compared to

other languages we are using.

All respondents who discussed reusability feel it is more expensive

to develop software for reuse. Increased documentation and reliability

requirements were mentioned as primary cost drivers. It was suggested that

only large software developers that maintain internal software libraries

would benefit. While one expert agrees that costs will increase initially,

he feels additional costs will be nominal after personnel achieve an under-

standing of reuse issues.

The political ramifications of reusability were mentioned by several

experts. The question most often posed: Who will be responsible for

support? Due to these political issues, most feel the only reuse will be

contractors reusing their own code.

Part of the reusability issue is rehosting. Operating systems have

made the rehosting of Ada code difficult. Also, some Ada features perform

tasks that are usually thought to be operating system tasks. Encountering

unimplemented features in validated Ada compilers slows rehosting and thus

reusability.

JJ

4 .7 IMPACT OF LANGUAGE FEATURES

Several language features were mentioned as potentially impacting

productivity. For example: packages (collections of related programs and

data) are seen as potential productivity enhancements; overloaded operators

(the feature of giving a new meaning to an operator, useful for defining

arithmetic for types that are not built into Ada) have mixed forecasts of

their impacts; strong typing (the restriction against mixing data type

across assignments in expressions) is seen as a productivity improvement;

and generics (a method of overcoming Ada's sometimes overly restrictive

typing) [Saib-85j are seen as potentially dangerous. The enforcement of

inter-module dependencies by the compiler is viewed as extremely helpful.

The feature most often mentioned is Ada's strong typing. According

to some, this should decrease programmer-induced errors and allow them to

be discovered earlier in the development cycle. Other respondents men-

tioned the reverse side of strong typing. Type conversions are more

difficult, and the overuse of derived types can make Ada source code more

obscure and complex than necessary. It was suggested by one respondent

that, while Ada will lead to early detection of programmer errors, it will

not eliminate design and logical errors.

One expert foresees fewer interfacing and system problems. This

view has also been expressed at AdaJUG meetings.

Ada is supposed to be an easy language to read, easier to read than

write. This reading ease should simplify maintenance.

As discussed in Maturity Issues (Section 5.9), tasking received sig-

nificant concern from the respondents. At AdaJUG meetings it has been

suggested that tasking can create difficult debugging and integration prob-

lems. Exception handling routines can also require more expertise during

later phases.

S'

S.

i" - - * •p

I

4.8 IMPACT OF AN Ada PROGRAMMING SUPPORT ENVIRONMENT (APSE)

According to most respondents, the power of Ada will be derived not

only from the richness of the language, but the use of an APSE [Babich-831.

The respondents predicting the greatest success for Ada often view Ada and

the APSE as inseparable. (APSE is used in the context of the environment

used with the language. This is not intended to imply that there will be

one standard APSE.) Those having negative experiences with the language

were usually using Ada as simply another programming language.

Though most agreed an APSE is still in the development stage, some

respondents thought a good APSE might contribute more to the success of a

project than the Ada language itself. One mentioned an APSE directly

supporting modern development methods further enhances programmer

productivity.

Several respondents think a standardized tool package is a noble

idea, but not realistic. "We don't know enough about tools to

standardize." One said it will be two years before tools have an impact on

costs. (He added that Fortran required 10 to 15 years before tools had

Impact, but with Ada it will take much less time.)

Another suggested collecting data on the number and type of tools

used on a project. He also suggested terminal response time might become a

driver when heavy APSE use is required.

One expert expressed concern that the available APSEs do not provide

an acceptable listing showing the relationship of source to assembly to

machine code for debugging purposes. This view has been supported by other

software developers at AdaJUG meetings. Lack of symbolic debuggers will

keep near-term costs higher.

,.9 MATURITY ISSUES

As two experts stated, "Any implementation of a new language has

problems," and "we suffer with any new technology." In that respect, it

any one particular feature of Ada (ame tinder fire during the study, it was

'a

'aa.
a .-.-- --'- -.. ;.. -; .- - - - -': '-;:. - - . , ., , - . , . , ,..... , . . .' " . -

17.1
tasking. Almost all respondents feel the current tasking implementations

are inefficient and therefore unusable. However, when pressed, many

respondents feel the design of the tasking provisions in the language is

adequate.

However, the opposite view has been expressed at AdaJUG meetings.

Ada lacks a suitable method of providing regularly scheduled tasks within

maximum time constraints.

Lack of efficient tasking has led some to condemn the entire lan-

guage and predict it will not succeed. Others anticipate that as compiler

writers become less concerned with passing validation and turn their

attention to optimization, this problem will go away [Van der Linden-851.

The optimization issue was explored further. Optimization is a
near-term problem. Ada does not currently meet embedded (airborne) system

needs because of large object code sizes and slow run times, while the

processors have limited memory and severe timing restrictions. Ada will be

used more for large-scale ground-based systems until these problems are

solved. Eventually, compiler writers will solve these problems.

The actual relationships between source, assembly, and machine code

are not yet appreciated, which one expert called a "lack of traceability."

Implementations can also vary widely between different compilers and oper-
ating systems.

Some respondents predicted managers will suggest the use of language

subsets to avoid inefficiencies in compilers or operating systems. Lan-

guage features that have been poorly implemented by compilers, operating

systems, or the hardware may not be used. Also, more subtle features of

the language (such as generics) may be avoided. Some advanced Ada features

may be lost if there is widespread use of subsets to mimic other more

familiar languages (Hummel-841.

2 7

Confidence in existing software libraries with proven track records

may also slow the move to Ada. There is a reluctance to translate long-

standing libraries to Ada.

It has been suggested that interfaces to other languages be further

developed to allow the use of existing libraries in other languages to

benefit current Ada projects. Projects developed in other languages should

not be converted to Ada. Instead, new features should be implemented in

Ada.

The immaturity of Ada tools was noted by most respondents. Accord-

ing to one, current tools are not of the quality expected in production

environments. Quality of the development environment is considered sig-

nificant [Roy-85J. Experts think it will be three to five years before the

* APSE matures.

.4

Respondents with a positive attitude towards Ada generally feel that

Ada will mature faster if the government quits granting waivers. At the

AdaJUG, some participants believe the problems with Ada will be solved if

everyone is forced to use it. SPOs, on the other hand, only want to use

Ada if there is an implementation for their target machine; they do not

have the budget or schedule to solve language problems.

4 .10 DATA COLLECTION ISSUES

Data from early projects may not accurately reflect the true impact

of Ada. Two major reasons are advanced. First, for the simple reason that

when a project is closely monitored, performance improves (the Hawthorne

Effect).

Second, most respondents agree first projects may involve better and

more motivated staff than typical projects. For example, some Ada research

groups will perform initial development. One modeler specifically recom-

mends against collecting data from projects involving such research groups

since Ada often becomes the goal rather than the tool and clouds the

results.

.-.

Respondents disagree on the amount first projects will differ from

subsequent Ada projects. One says they can cost as much as 30 percent

more. Another feels that initial Ada projects are not significant enough

within many contractors to get the best people, as suggested above. He

attributes the difference between first and subsequent projects to the

learning curve.

4,.l1 ITEMS RECOMMENDED FOR DATA COLLECTION

Schedule is considered to be a cost driver, especially when it is

constrained. These constraints should be collected, particularly on the
design phase, which many experts believe to be critical. Funding avail-

ability, which impacts schedule, can also affect cost.

The similarities and differences in tools and compilers between

contractors and subcontractors should be collected. The number and type of

tools are of interest. Also, terminal response time might become a driver

when heavy APSE use is required.

Instead of a single collection, iterative collection of cost, time,

environment, people, and system data was suggested. These should include

* actual staffing and resources by month and by labor category. Addition-

ally, the defect pattern (rate and cumulative), monthly, by severity, was

recommended.

There was the suggestion that a new metric is needed for measuring

size. The definition of a line of code is unclear. Also, because com-

pilers vary in efficiency, the expansion ratio is difficult to project.

One suggested metric is number of data types and number of data objects.

In addition to metrics for measuring code size, metrics for measuring

reused software are needed.

Additional useful data includes documentation page counts and levels

thereof. Also, the specification level requested in the RFP: first, which

military standard; then, what tailoring.

29

L Z'

RECOMMENDATIONS FOR ADDITIONAL RESEARCH

5. In addition to the actual data collection, we recommend several

other research projects. These projects can be divided into two general

areas. First are studies that will provide data for estimating software

costs. Second are studies that will help SPOs estimate costs other than

direct labor, so they can better budget the total cost of doing an Ada

development.

In the first category are costs for requirements and maintenance.

Requirements generation cost, when there is concurrent hardware develop-

ment, is a system level cost that contains both software and hardware

costs. Currently there is no attempt made to isolate the software portion

of these costs. This is also true even when there is no hardware

development.

Lower maintenance costs is one of the hoped-for results of Ada

developments. Also, maintenance costs for software in mature higher-order

languages are hard to project. A study to determine what quality (e.g.,

open trouble reports and engineering change proposals and severity) and

complexity metrics at software turnover should be measured, and what opera-

tional environments influence maintenance costs should be initiated, so

that data to be collected is identified and a procedure for data collection

is in place and ready. A pilot study to generate and test hypotheses on

mature language developments would lay groundwork for the Ada effort.

Current software cost estimating models fail to take a systems

approach to cost analysis. They rely on size as the prima-y driver, and

during a project's system definition phase, size estimates are hard to make

and usually are not very good. This leads to underestimated costs and

schedules.

For early estimates, a model that relies on characteristics of the

system being developed is needed. System parameters are more stable than

3L" 1>

code size estimates and would therefore produce better early estimates.

Cost and schedule estimates could be made from code size once the project

has advanced to the point where good size estimates can be made.

The second type of study involves indirect costs such as education

and capitalization. Because there is a lack of Ada experience, staff must

be educated. SPOs will need an idea of the costs of education and the time

required to make programmers and designers proficient in Ada and modern

design methods.

Because development of Ada code requires more central processor time

and memory than current higher order languages, SPOs should expect much

higher capitalization costs. There should be a document that quantifies

these costs by development environment type and also contrasts the capa-

bilities and benefits of the different environments.

We recommend a tools study be performed. This study will explore

the history of software tools and development methods and their impacts on

productivity, and identify the trends in productivity gains. This infor-

mation will be combined with exploration of expected advances, especially

with respect to Ada Programming Support Environments. The goal will be to

project, on a time line, the improvements that can be expected due to the

improved tools and methods. This will provide cost estimators a guideline

when trying to account for tools in estimates of future Ada (and non-Ada)

projects.

Finally, SPOs need a resource that describes compiler performance. I

There are compiler studies being done by industry, and ESD would benefit by

collecting these studies and their updates so SPOs can use them for

reference.

t

DATA COLLECTION FORM STRATEGY AND
CROSS-REFE RENCE TO ESD FORMS

This section provides a cross-reference from the Ada data collection

package (Appendix C) to the ESD software cost data base collection package

(referred to as the ESD forms). Additionally, the rationale for differ-

ences between the Ada forms and the ESD forms are addressed where

appropriate.

6 .1 OVERALL CHANGES WITHIN FORMS

In some cases, minor heading wording changes are made for similar

data. These are not individually identified.

6 .1.1 MIL-STD 2167 TERMINOLOGY WITHIN FORMS

MIL-STD 2167 terminology is used in the Ada data collection package.

This causes some semantic differences between the two forms that are not

individually identified.

6 .1.2 RANGES OF VALUES WITHIN FORMS

Since the software environment is so important to Ada and some

environment data is difficult to collect precisely, several items are

collected as ranges, using the least, expected, and maximum values rather

than single values. This technique quantifies the uncertainty. In cases

where actual values are known, the form has a place for this actual value

instead of the range.

Additionally, this form arrangement can collect both the original

estimates and the actual data to see the differences.

6.1.3 ADDITIONAL COST DATA TO SUPPORT CURRENT COST MODELS

Several data are added to support the major software cost models as
of 1986. These are not all Ada-specific drivers, but are identified as

major software cost drivers. The ESD forms are missing several of these

data items.

33

- - - - -

6 .2 ESD FORM ABBREVIATIONS

In the cross-reference tables, the ESD forms are referred to by the

following abbreviations:

SDP Software Development Project Summary Data Form

DTC Development and Target Computer Data Form

CPCI Computer Program Configuration Item Summary Data

RED Resource Expenditure Data Form

CPCIFSD Computer Program Configuration Item Function and
Sizing Detail Data Form

6 .3 SOFTWARE DEVELOPMENT PROJECT FORM CROSS-REFERENCE

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

1.1 Project Name SDP 1. Project Name

2. Development SDP 2. Development
Contractor/ Contractor/
Organization Organization

3.1 Mission SDP 3.1 Mission
Description Description

3.2 Major SDP 3.2 Major
Hardware Hardware
Interfaces Interfaces

3.3 Major System SDP 3.3 Major System
Functions Functions

3.4 Major Software SDP 3.4 Major Software
Functions Functions

3.5 Number of CSCIs SDP 3.5 Number of
CPCIs

3.6 Computer Software SDP 3.6 CPCI Names
Configuration
Item (CSCI) List

3.7 System User SDP 3.7 System User

... .f d~ ;
. * *

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

3.8 Relative Magnitude [NONE)
of the Software
Effort

Will provide information on whether the project is primarily
software, hardware, or a mixture.

3.9 Software [NONE]
Development
Standards

Will help determine level of DoD standards applied to the project.

4. Project SDP 6. Development
Milestones Schedule

Military Standard 2167 terminology added.

5. Modern SDP 4.1 Specification
Development
Method Use

5. Modern SDP 4.2 Design
Development
Method Use

5. Modern SDP 4.3 Development
Development
Method Use

5. Modern SDP 4.4 Coding
Development
Method Use

5. Modern SDP 4.5 Testing
Development
Method Use

5. Modern SDP 4.6 Validation/
Development Verification
Method Use (Inspection)

5. Modern SDP 4.7 Formalisms
Development
Method Use

Development practices may be an important part of Ada's software
engineering evolution. Thus, specific development methods are
included to capture their impacts during development. Both Ada-
related practices and other, less sophisticated practices are

35

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

added. This should provide data regarding the impact of software
engineering methods on Ada. Additionally, the level of expertise
with each practice is collected, since methods may improve produc-
tivity when developers are experienced, but impede project progress
when they are first learned.

6. Software Quality [NONE]
Required

The data will provide a qualitative assessment of the required
software quality. This data may be contrasted with data regarding
the software goals and costs. The following quality goals are
included:

- Usability
- Reliability
- Efficiency
- Integrity
- Testability
- Portability
- Correctness
- Maintainability
- Reusability
- Interoperability

7. Software Change SDP 8. Software Change
History History

8. Comments [NONE]

361
L -,

1l

6 .4 SYSTEM LEVEL OR CSCI LEVEL DOCUMENTATION FORM CROSS-REFERENCE

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

1. Project Name
and Date

2. Development
Contractor/
Organization

3. CSCI Name if
CSCI Level

4. Document SDP 7. Documentation

4. Document CPCI 9. Documentation

4. Document CPCI 7. Quality of
Specification

This form replaces the documentation questions in the ESD SDP
and CPCI forms. It uses 2167 terminology and presents a more
comprehensive list of documents. It also asks if the document
is GFD or provided to the project, whether the contractor wrote
the document, for the quality of the document, and the date the
document was completed.

37

% " % , . .-.-..- %-..-..... +.....¢ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .. '........,.... :...... ... •.'- ,..... ,. .-. ,.-,.*,

V W1KW'WWW ~ ~ ~ ~ ~ -V-_YWUxXJW .Xx . -WR.. , 'a W .

o' .5 DEVELOPMENT COMPUTER SYSTEM AND TOOLS FORM CROSS-REFERENCE

Ada Ada ESD ESD ESD

Question Topic Form Question Topic

1.1 Development

Contractor/
Organization Name

1.2 Development
Contractor/
Organization Location

2. Project Name

3.1 Development DTC 2.1 Information

System Attributes if different
from target
computer

3.1 Average People DTC 2.4 Average Engrs./
per Terminal Programmers

per Terminal

3.2 Access Modes DTC 2.3 Access Modes

3.3.1 Turnaround Time OTC 2.2 Turnaround
No Recompile Time

3.3.2 Turnaround Time DTC 2.2 Turnaround
Recompile Required Time

Turnaround time is subdivided to collect separate data encom-
passing both the simple edits, and the time delays created
when a minor change causes a major recompile (which could

take hours). These differences may cause major differences
within Ada developments.

3.3.3 Terminal Response [NONE]

Since Ada can be more dependent on support tools, terminal

response can play a larger role in developer productivity,
with slow terminal responses having a significant impact on
the tool usefulness and developer morale.

3.3.4 Major Changes DTC 1.8 Virtual
per Month Machine

Volatility
More detail.

3.3.5 Minor Changes DTC 1.8 Virtual

per Month Machine
Volatility

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

More Detail.

3.4 Hours Development (NONE)
System Operates

3.5 % Development DTC 2.9 Development
System Hours Computer
Available Resource

3.6 Development System (NONEI Availability

Security
Classification

Development costs may be influenced by the level of security
imposed on the development computer.

4. Tools SDP 5. Software
Development
Tools Used

Tools should impact Ada costs significantly. Ratings of specific
automated or manual (i.e. methods) tools or lack thereof, are
Included to capture their Impacts during development. Both Ada-
related tools and more general tools are listed for two reasons.

First, tools listed on the ESD form are added to ensure trace-
ability. Second, some fairly primitive tools may be required to
bootstrap Ada developments.

Additionally, the level of expertise and frequency with which
each tool is used is collected since tools may improve produc-
tivity when developers are experienced, but impede (or only

r slightly improve) project progress when they are first learned.

Specific life cycle phases where each tool is applied to the
project is added to collect data regarding the appropriateness
and impact of tools.

The CSCI affected by the tool use is asked for so the effect of
the tool on the CSCI cost can be measured.

5.1 Number of DTC 2.5 Number of
Development Development
Sites Sites

5.2 Development DTC 2.6 Development
Computer and Site Site
Locations Locations

Ii

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

6. CSCIs Developed [NONE]
on Development
Computer

A project can have several different development computers with
different tool sets.

7. Comments [NONE]

[-
[.

[.I

[- j/~~~------------

(.6 TARGET COMPUTER SYSTEM FORM CROSS-REFERENCE

Ada Ada F3D ESD ESD
Question Topic Form Question Topic

1.1 Development
Contractor/
Organization Name

1.2 Development
Contractor/
Organization Location

2. Project Name

3.1 Target Computer DTC 1.1 Manufacturer
Manufacturer and and Model
Model Number

3.1.1 Main Memory Size DTC 1.2 Main Memory
(Words) Size in Words

and Word Size
in Bytes

3.1.2 Word Size DTC 1.2 Main Memory
Size in Words
and Word Size
in Bytes

3.1.3 Number of [NONE)
Processors in
the Target

Multi-processor systems can cause additional levels of effort
throughout the development cycle in either Ada or non-Ada
developments.

3.1.4 Maximum Main DTC 1.3 Maximum
Memory Size Main

Memory Size

3.1.5 Virtual Memory [NONE)
Machine

Virtual memory target removes memory space constraints.

3.1.6 CPU Processing DTC 1.4 CPU
Speed (MIPS) Processing

Speed

3.1.7 Reserve Memory DTC 1.5 Reserve
Requirement Memory

Requirement

41

--- V. -- -

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

3.1.8 Reserve Timing DTC 1.6 Reserve

Requirement Timing
Requirement

3.1.9 Programming [NONE]
Languages

This data will provide information when Ada is required to
interface with other programming languages.

3.1.10 Difference DTC 2.1 Difference
Between Between
Development and Development
Target Computer and Target

Computer
3.1.11 Accessibility to (NONE]

Target

The target machine(s) may not be fully accessible. This data
will point out productivity differences for any type of project.
Additionally several persons have stated concerns regarding Ada
target debugging efficiency and difficulty.

3.1.12 Target Simulator (NONE]
Size

This data identifies potential memory constraints not directly
related to the total target machine size.

3.2.1 Major Changes DTC 1.8 Virtual
per Month Machine

Volatility

3.2.1 Minor Changes DTC 1.8 Virtual
per Month Machine

Volatility

3.3 Concurrent DTC 1.7 Concurrent
Development Development
with Software with Software

4. CSCIs Executed DTC 1.12 CPCIs Hosted
on Target This Computer

5. Comments

.. ~ -.....................

6 .7 COMPUTER SOFTWARE CONFIGURATION ITEM FORM CROSS-REFERENCE

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

(DROPPED) CPCI 8.8 Languages
Used

This has been moved to the Development and Target Computer
Summary Data Form to cover any cases where other languages
are interfaced with Ada.

1.1 CSCI Name CPCI I. CPCI Name

1.2 Development
Contractor/
Organization

1.3 Project Name

2. CSCI Functional CPCI 2. Functional
Description Description

2.1 Operating [NONE)
Environment

3.1 Milestones CPCI 3.1 Milestone
Data

3.2 Schedule CPCI 3.2 Schedule
Acceleration/ Acceleration/
Stretchout Stretchout
Assessment Assessment

4.1.1 Analyst CPCI 4.2 Average
Quality Personnel

Quality
Percentile

4.1.2 Programmer CPCI 4.2 Average
Quality Personnel

Quality
Percentile

4.1.3 Team Programming CPCI 4.1.C Average
Language Experience
Experience Languages

Used

4.1.4 Development CPCI 4.1.B Average
Methods Experience
Experience Techniques

Used

43

V

.4

• ': , ,.., .; :- ,-. -. ,,.. ,

Ada Ada ESD ESD ESD

Question Topic Form Question Topic

4.1.5 Average Quality CPCI 4.1.D Average
and Experience Experience
Development Virtual
Virtual System Machine
Experience

4.1.6 Average Quality CPCI 4.1.A Average

and Experience Experience
Applications Area Applications
Experience Area

4.1.7 Support Software/ CPCI 4.1.E Average
Tools Experience Experience

Support
Software
Tools

The overall rating of the tools experience will further quantify
the Ada relationship between language and tools. Additionally,
it will provide a cross-check to the detailed tool ratings and
ensure tool usage is not misstated.

4.2 Average Formal [NONE]
Training

Some persons have stated that self-taught people will not be
able to learn Ada as readily as those who are formally trained.
This data quantifies the developers' formal training.

4.3 Peak Designer CPCI 4.4 Peak

Staff Manloading

4.4 Peak Programmer CPCI 4.4 Peak

Staff Manloading

4.5 Peak Tester CPCI 4.4 Peak
Staff Manloading

4.6 Maximum [NONE]

Staffing Rate

4.7 Overall CPCI 4.3 Manpower

Personnel Availability
Availability

5. Reliability CPCI 5. Reliability

Requirement Requirement

6.1 Inherent CPCI 6. Complexity
Difficulty of
Application

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

6.2 Inherent [NONE]
Complexity of
Data Structures

This data may provide insights into the cost impacts of Ada's
data handling capability.

6.3 System Integration [NONE]
and Test

7.1.1.1 Total Size CPCI 8.1 DSLOC
Excluding Excluding
Documentation Documentation

7.1.1.2 Documentation CPCI 8.2 Documentation
Lines Lines

7.1.2 Operational CPCI 8.5 Operational
Response Response
Requirements Requirements

Distribution

7.1.3.1 Source Statement CPCI 8.6 Source
Mix Executable Statement

Type Mix

7.1.3.2 CSCI Source Code CPCI 8.4 Size
Mix Breakdown by

Operatici as
a Percent of
Item 8.1

7.1.4.1 Memory DTC 1.10 CPU Memory
Constraint Constraint
Percent Evaluation

7.1.4.2 CPU Time DTC 1.11 CPU Time
Constraint Constraint
Percent Evaluation

7.1.4.3 Real Time CPCI 8.5 Operational
Operation Percent Response

Requirements

7.1.4.4 Multi-Processor INONEI
Percent

This data code effort required to develop multi-processor
functions due to multi-processing requirements. It will be
useful for both Ada and non-Ada projects.

%4

2. 7- Y.7- -Y Y Y Y -

Ada Ada ESD ESD ESD

Question Topic Form Question Topic

7.1.4.5 Multi-target (NONEI
Percent

This data identifies CPCIs that must run on multiple targets and

alerts the analyst that there may be extra effort.

7.1.5 CSCI Reused Code CPCI 8.9 Reusable Code

From Other From Other
Projects Projects

More detail.

7.2 Function Point [NONE]
Data

7.3 Size/Complexity [NONE]

Number of Ada Objects, Program Units, Layers of Program Units,

Blocks.

8.1 Total Data Base CPCI 8.3 Data Base
Size (Words) Size in Bytes

or Characters

8.2 Total Unique CPCI 8.3 Data Base
Data Items Size in Bytes

or Characters

8.3 Total Number of CPCI 8.3 Data Base

Records Size in Bytes
or Characters

8.4 Unique Data CPCI 8.3 Data Base

Types Size in Bytes
or Characters

9. Special Display CPCI 8.7 Special
Requirements Display

Requirements

10. Software Failure CPCI 10. Software
History Failure

History

Failure history is expanded to collect not only the number

of errors, but the phase when these errors are introduced.
Several persons stated we will find errors earlier in the life
cycle on Ada developments. This data should help show Ada's

impact on reliability and software anomalies. Additionally,
this data should help assess the developer capabilities and

tools impact on reported errors.

.-. %. -.

Ada Ada ESD ESD ESD
Question Topic Form Question Topic
11. Software Change SDP 8. Software

History Change

History

This now measures the impact of requirement changes on the CSCI.

12.1 Development Environment

12.1.1 Resource (NONE]
Dedication

This data will quantify costing impacts of sharing development
computers and other resources.

12.1.2 Resource/Support [NONE]
Location

This data will provide insights into the productivity impacts of
the availability of expert advice and various project resources
to the developers. This may be especially important while Ada
is still new to many developers.

12.1.3 Security Level [NONE]

Security can be a major cost driver on any software project.
This data may be especially useful when comparing Ada
experimental projects with actual mission critical software.

12.1.4 Contract Type [NONE]

12.2 Specific [NONE]
Development Goals

The following potential development goals have been added to
collect data regarding differences in cost due to perceived or
real development goals:

- Maximum Maintainability
- Maximum Reuse of Pre-existing Software
- Maximum Reusability of CSCI-Level End Products

on Future Developments
- Maximum Reusability of Top-Level CSC End Products

on Future Developments
- Maximum Reusability of Lower-Level CSC End Products

on Future Developments
- Maximum Output Clarity
- Maximum Use of Off-the-Shelf Software
- Language/Tool/Method Evaluation

47

r %

Ada Ada ESD ESD ESD
Question Topic Form Question Topic

13. Special Ada INONEJ
Features

These data will show if any Ada subsets are used within the
CSCI. This iF important since many people believe that some
features are too complex or inefficient.

14. Comments

o.8 RESOURCE EXPENDITURE DATA CROSS-REFERENCE

The Resource Expenditure Data Form is unchanged from the ESD

package.

6.9 COMPUTER SOFTWARE SIZE CROSS-REFERENCE

The ESD Computer Software Size Summary Data Form is not numbered,

*thus this cross-reference lists only the differences between the Ada form

and the ESD form.

Ada Ada ESD ESD ESD

Question Topic Form Question Topic

4.1 Size format CPCIFSD

The size format allows size specifications in several formats
including:

- Source Lines of Code
- Carriage Returns
- Semicolons
- PDL Lines
- Ada Statements
- Other

This should help clarify the specific sizing data more completely.

4.2 CSC Size CPCIFSD

The following data are requested for each CSC:

- Total Size excluding Comments and Documentation
- Comments and Documentation
- Number of Machine words
- Size Reused
- Size to be Reusable
- Pre-existing Code Size
- Mods to Pre-existing
- Number of Function Points
- Number of Ada Objects
- Number of Packages
- Number of Tasks
- Number of Blocks
- Layers of Blocks
- Number of Ada Program Units
- Layers of Ada Program Units
- Number of Ada Statements
- Language

49

. ... J1...

BIBLIOGRAPHY

Babich, Wayne A., "Productivity Issues in the Ada Language System," IEEE
Cornuter Society, IEEE Computer Society Press, Silver Spring,
Maryland, 1983.

The Ada Language System (ALS) developed by SofTech should increase
productivity by minimizing error and eliminating unnecessary work.
The environment is intended to decrease the effort required to track
and organize the components of software under construction, and to
minimize errors and regressions induced by mistakes in intra-team
coordination.

Basill, Victor R., Katz, Elizabeth E., "Metrics of Interest in an Ada

Development," IEEE Conference, IEEE Computer Society Press, Silver
Spring, Maryland, August 1983.

Basili, Victor R., Katz, Elizabeth E., Panlilio-Yap, Nora Monna, Ramsey,
Connie Loggia, and Chang, Shih, "Characterization of an Ada Software
Development," IEEE Conference, IEEE Computer Society Press, Silver
Spring, Maryland, September 1985.

Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1981.

Boehm, B., "Software and Its Impact: A Quantitative Assessment," Writings
of the Revolution, YOURDON inc., New York, New York, 1982.

There is more potential payoff in improving the efficiency of your
analysis and validation efforts than in speeding up your coding.

More thorough analysis and design more than pays for itself in reduced
testing costs.

Brooks, Fredrick P., Jr., The Mythical Man-Month, Addison Publishing
Company, Inc., Philippines, 1975.

Buxton, J., "'Stoneman' Requirements for Ada Programming Support Environ-
ments," NTIS ADA-100404, February, 1980.

Buzzard, G. D. and Mudge, T. N., "Object-Based Computing and the Ada
Programming Language," Computer, March 1985.

Chang, Shih-Chio and Yau, Stephen S., "Estimating Logical Stability in
Software Maintenance," IEEF, IEEE Computer Society Press, Silver
Spring, Maryland, 1984.

Addresses the subject of the logical ripple effect and a new approach
for logical ripple effect analysis (determining the effect that find-
ing one error in the source code will have).

50

%IF~r A

Freedman, Roy S., Programming with APSE Software Tools, Petrocelli Books,
Inc., Princeton, New Jersey, 1985.

Galorath, Daniel D., "Short and Long-term Ada Impacts," Proceedings of the
International Society of Parametric Analysts, ISPA, May 1986.

German, Steven M., "Monitoring for Deadlock and Blocking in Ada Tasking,"
IEEE Transactions on Software Engineering, Volume SE-lO, Number 6,
IEEE Computer Society Press, Silver Spring, Maryland, November 1984.

Hamer, P. and Frewin, G. "Software metrics - a critical overview," The
Software Development Process State of the Art Report, Pergamon
Infotech Limited, Maidenhead, Berkshire, England, 1985.

Cost-to-fix errors increases more or less exponentially with the stage
in the life-cycle at which it is fixed.

Helmbold D. and Luckham, D., "Debugging Ada Tasking Programs," IEEE
Computer Society 1984 Conference on Ada Applications and Environments,
IEEE Computer Society Press, Silver Spring, Maryland, October 1984.

Honeywell Inc., The Programming Language Ada Reference Manual, Springer-
Verlag, Berlin, Heidelberg, New York, 1981.

Hummel, H., Nast, M., Uthke, E., "Training Concept for the Cost-Effective
Development of Reliable Software Using the Programming Language Ada,"
Proceedings of the Third Joint Ada Europe/Ada TEC Conference,
pp. 26-28, 1984.

"The possibility of realizing the full potential of Ada's modern
features could be lost if trainees are allowed to gain the habit of
using a subset of Ada in the style with which they are familiar in
other languages."

The TYPE of training is VERY important. Depending on the type of
software to be developed, different aspects of the language should be
emphasized in the training course.

Jensen, Dr. Randall W., "Projected Productivity Impact of Near-term Ada Use
in Software System Development," Proceedings of the International
Society of Parametric Analysts, ISPA, May 1985.

Jones, Anita and Ardo, Anders, "Comparative Efficiency of Different
Implementations of the Ada Rendezvous," Proceedings of the AdaTEC
Conference on Ada, ACM, 1982.

Klumpp, Allan R., "Space Station Flight Software: Hal/S or Ada?,"
Computer, March 1985.

Litvintchouk, Steven D., Matsumoto, Allen S., "Design of Ada Systems
Yielding Reusable Components: An Approach Using Structured Algebraic
Specification," IEEE Transactions on Software Engineering, Volume
SE-10, Number 5, IEEE Computer Society Press, Silver Spring, Maryland,
September 1984.

51

Meeson, R. N., Jr., "Function-Level Programming in Ada," IEEE Computer
Society 1984 Conference on Ada Applications and Environments, October
1984.

Narfelt, Kjell-Hakan and Schefstrom, Dick, "Towards a KAPSE Database," IEEE
Conference on Ada Applications and Environments, IEEE Computer Society
Press, Silver Spring, Maryland, 1984.

Newell, A., "Programmer Productivity," The Software Development Process
State of the Art Report, Pergamon Infotech Limited, Maidenhead,
Berkshire, England, 1985.

It is often said that a few hours of analysis can save hundreds of
hours of programming (and reprogramming), and there is no doubt that
productivity in testing will be one result of good analysis and
design.

Programmers in Ada should be able to become largely independent of the
"target" environment.

The additional time for analysis and design can completely absorb the

savings in programming.

Organick, E. I., Carter, T. M., Maloney, M. P., Davis, A., Hayes, A. B.,
Klass, D., Lindstron, G., Nelson, B. E., and Smith, K. F., "Transform-
ing an Ada Program Unit to Silicon and Verifying Its Behavior in an
Ada Environment: A First Experiment," IEEE Software, IEEE Computer
Society Press, Silver Spring, Maryland, January 1984.

Peters, Lawrence J., Software Design: Methods & Techniques, YOURDON inc.,
New York, New York, 1981.

Privitera, J. P., "Ada Design Language for the Structured Design
Methodology," Proceedings of the AdaTEC Conference on Ada, ACM, 1982.

Roy, D., "SEL Workshop 86 paper," Proceedings of the Tenth Annual Software
Engineering Workshop, December 1985.

The quality of the development environment significantly impacts
software development productivity.

Even with the features of Ada, it is possible to develop poor soft-
ware. The features will have to be closely controlled by competent
project managers because these features are powerful, hence dangerous.
Moreover, those powerful features provide another dimension of design
decision. We feel that a methodology that helps the software engineer
allocate function and data structures to packages and tasks is
necessary.

We found that Ada is sufficiently complex, that we kept learning
throughout the pilot project, and even beyond. We also found that
none of the standard training devices (seminars, books, computer-aided
instruction) could alone address the broad range of issues that really
are at the heart of the problem.

L%" i , ,".- "-. -7' l '_7 ,_ ""*-------- 7'"i f> h,,.' ",7 ' , " ' -"-

In the Ada era, a comprehensive education in the software engineering
principles that form the basis of the Ada culture must replace ad-hoc
training in the syntactic recipes of a language. 4

That is why we recommend a variety of continuous education measures in
our report: Assuming adequate familiarity with modern software engi-
neering practices, at least 4 person-weeks is the minimum training
time. This time includes teaching a methodology adapted to Ada and
50 percent hands-on experiments under the supervision of an expert.

Ada should prove to be an excellent tool in the hands of competent and
properly trained software developers. It will not be a panacea, com-
pensating for inadequate methods or training, but it will be benefi-
cial if properly applied.

There will be major difficulties at BOTH ends of the programmer
competency scale. Many of the brightest programmers will tend to
produce overly complex designs, using every possible feature of the
language; the application itself becoming a side issue, many of the
less competent programmers will never really understand the Ada
technology.

Saib, Sabina, Ada: an introduction, Holt, Rinehart, Winston, New York, New
York, 1985.

Tichy, Walter F., "Adabase: A Data Base for Ada Programs," Proceedings of
the AdaTEC Conference on Ada, ACM, 1982.

Urban, Joseph E., Fisher, David A., "Ada Environments and Tools," IEEE
Software, IEEE Computer Society Press, Silver Spring, Maryland, Marc

Van Der Linden, P., "Experience with Ada," Software World, Volume 15,
Number 2, 1984.

For successful use of Ada, programmers MUST be educated.

Van der Linden, P., "Looking Forward With Ada," ACM Ada Letters, Volume V,
Number 1, July, August 1985.

Ada is a management problem.

Early compilers may emphasize "passing" validation, more than trying
to be useful or optimizing.

Wallis, P. J. L., "Economic factors in Software Production," The Software
Development Process State of the Art Report, Pergamon Infotech
Limited, Maidenhead, Berkshire, England, 1985.

Software could be better if its development did not depend on highly
skilled manpower.

It is the need to rework development based on faulty design decisions
which reduces productivity.

53

. " ."

Software tools should make software development more cost-effective.
Skilled programmers are a scarce resource and will continue to be so.
Development techniques which provide a path away from today's labor-
intensive methods will permit levels of production control and docu-
mentatioi, idequate to the development of truly reusable software.

Ada should help prevent some of the interface errors.

Whitaker, Col. W. A., "Three Ada Examples," Diest of Papers, IEEE COMPCON
San Francisco, IEEE Computer Society Pres Slver Spring, Maryland,
Spring 1983.

This is an older article (1983). The author felt that there was "no
insurmountable training problem at the programmer level." He felt

translation of existing programs was an excellent way to bring pro-
grammers up to speed.

The more mathematical functions in the program, the easier it should

be to code in Ada, because the mathematical portion of Ada is the
closest to the other languages. His concluding question was, "Ada

J' makes a lot of things possible, but can we make them happen?"

Wolf, Alexander L., Clarke, Lori A., and Wileden, Jack C., "An Ada Environ-
ment for Programming-in-the-large," IEEE Conference on Ada Applica-
tions and Environments, IEEE Computer Society Press, Silver Spring,

Maryland, 1984.

Wolf, Alexander L., Clarke, Lori A., and Wileden, Jack C., "Ada-Based
Support for Programming-in-the-Large", IEEE Software, IEEE Computer
Society Press, Silver Spring, Maryland, March 1985.

U-

APPENDIX A

QUESTIONNAIRE

A-i

APPENDIX A

QUESTIONNAIRE

%

The following is the base set of questions used during interviews of soft-

ware modelers and Ada experts.

General Questions

I. In general, how do you feel Ada will impact the cost of a
software development project? Please consider small and
large projects and short- and long-term impacts.

2. Are you familiar with any Ada projects in progress or which
have already been completed? If yes, in what way was the use
of Ada a positive or negative experience?

3. Does the type of project (mission critical vs. commercial,
etc.) affect the impact of the use of Ada or the APSE?
If so, to what degree?

4. Can the size (lines of source code) of an Ada project be
estimated as well as the size of previous projects in other
languages and environments (i.e., Fortran, Jovial, etc.)?

5. Can standard expansion ratios for machine to source
- instructions be used to predict source size?

6. What will be the different impacts of Ada as a language versus
Ada as a development environment (APSE)?

7. What trends do you expect over the next 5 years for Ada
projects? In specific, productivity, maintenance costs,
errors, or any area you feel is significant.

8. The following have been advanced as design considerations for
Ada. Would you comment on the ability of Ada or the APSE to
address these concerns:

Life-cycle support cost
Interface control
Analysis support
Version control
Management support
Multi-tasking provisions
Method independence (top down vs. bottom up, etc.)
Maintenance
Reliability
Readability
Transport across projects and computers

A-2

9. It has been said that, at first, Ada projects will be staffed
by the best people and be more closely monitored, which may
skew initial results. Do you agree with this statement and,
if so, what differences do you expect between "real" Ada
projects and "trial" Ada projects?

10. Will Ada ease re-hosting cost? Why?

11. How do you see Ada being applied? A full implementation vs.
subsets, at the KAPSE, MAPSE, or APSE levels.

12. How will Ada affect configuration management?

13. What data do you feel should be collected to help determine
the cost of an Ada project?

14. Do you think that all or any one of the Software development
cost and schedule estimation models currently in use can
accurately estimate the cost of an Ada project? If so why?
If not, why not?

15. Will effort and time be impacted equally by the use of Ada or
the APSE? If not, will there be a relationship between the
impact on time and the impact on effort?

16. What will be the impact of requiring software to be reusable?

Structured Design (Object-oriented)

1. Compared to the use of other languages and environments,
what would the cost of Ada be if structured designs were NOT
used at the beginning of the project?

2. How important to Ada and APSE use is past experience with
Structured Methods?

3. Would a poor quality specification cost more in Ada than in
another language?

4. What will be the cost and schedule impact on the requirements

specification, preliminary design, detailed design, code and
unit testing, software integration and systems integration
when Ada or the APSE is used?

5. Is the waterfall model of the software life-cycle applicable
to Ada and the APSE?

Staffing

1. What will be the effect of adding more people to an Ada
project? Is there a point where additional staffing is
ineffective?

A-3

2. Will Ada allow different staffing profiles (will the ability
to develop in parallel, if it exists, allow more effort with
less schedule)?

3. In determining the cost of an Ada project, how can or should
experience and training in Ada be measured?

PDL Questions

1. Can Ada be used as a preliminary design specification tool?

2. How will using or NOT using Ada as the PDL for the Project
impact the cost?

3. When should Ada be applied to the Project?

4. Does Ada, as a design language, require any design aids?
If so, what aids? (Data flow diagrams, etc.)

5. Will the process of refinement change Ada designs? Would it
simply be a matter of filling in more and more details, or are
structural changes likely to occur?

6. Will Ada as a PDL be usable for the public portions of
packages, or will refinement force changes in the PDL?

Programmer Questions

1. How much more would a "first" Ada project cost as opposed to
subsequent Ada projects?

2. How will Ada and the APSE affect programmer productivity?
Please consider the short- and long-term effects and the
overall cost of the project.

3. Will programmer portability be affected by the use of Ada or
the APSE?

4. Will Ada affect the management of a project? If so, how will
this impact the cost?

Debugging Questions

1. What, if any, new and different program errors may the use of

Ada and the APSE cause? Please state the nature of these
errors and where they will be experienced.

2. How will this affect cost and productivity?

3. Will the use of Ada and the APSE change where errors are
located In the life cycle?

A-4

Environment Questions

1. Even though Ada environments are intended to be portable, will
the implementation used affect Project cost (i.e., one
compiler vs. another, etc.) (Ease of use - Turnaround)?

2. Is the Ada desire for a standardized tool package realistic
and, if so, how will it impact costs?

Language Questions

1. What special features of Ada do you feel will have cost
impacts? (i.e., generic functions, overloaded operators,
packages, and any others which you may feel would impact
the cost)

2. When converting an existing project to Ada, what impact will
various source languages have and how may it be measured?
(i.e., Jovial J-3, Jovial J-73, Fortran, CMS-2, COBOL, TACPOL,
SPL/1)

Summary Questions

1. What other factors may impact the cost of an Ada project that
we haven't covered?

2. What specific pieces of data do you need that you don't have

now?

3. What specific pieces of data are superfluous to your analysis?

4. The following are factors which have been used in various cost
models (Boehm, 1981). Please indicate:

a. Which do you feel will have the greatest impact
on the cost of an Ada project?

b. Which do you feel will have the least impact
on the cost of an Ada project?

Size attributes
Source instructions
Object instructions
Number of routines
Number of data items
Number of output formats
Documentation

Number of personnel

A-5

Program attributes
Type
Complexity
Language
Reuse
Required reliability

Computer attributes
Time constraint
Storage constraint
Hardware configuration
Concurrent hardware development

Personnel attributes
Personnel capability
Personnel continuity
Hardware experience
Applications experience
Language experience

Project attributes
Tools and techniques
Customer interface
Requirements definition
Requirements volatility
Schedule
Security
Computer Access
Travel/rehosting

Candidate Projects For Data Collection

1. What projects can you recommend for actual data collection
during the next contract phase?

'4

5$

5,

p"

APPENDIX BI RESPONDENTS

r. B-I

,I

."

The names of the respondents have been removed to ensure

that the interviews distributed as part of this report

cannot be attributed. The respondent list has been

provided to ESD/ACCR under separate cover.

W 7 wLUUUr bW r ns.S.u .twt Vj.twS.* L tw f VtWLbS.U r T WuntWL US bII SbS 2 L

APEDI.

DAACLETON4i4 N ISRCIN

4.

. - , , _ - _ . • -. • - . - . . ,- - - - -- . - i , ; . ' ' :,

ESD ADA SOFTWARE DEVELOPMENT DATA COLLECTION FORMS

- PROJECT SUMMARY DATA

- SYSTEM LEVEL DOCUMENTATION DATA

- DEVELOPMENT COMPUTER SYSTEM AND TOOLS DATA

- TARGET COMPUTER SYSTEM DATA

- COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA

- CSCI LEVEL DOCUMENTATION DATA

- COMPUTER SOFTWARE SIZE DATA

- RESOURCE EXPENDITURE DATA

ADA IS A REGISTERED TRADEMARK OF THE UNITED STATES
GOVERNMENT (ADA JOINT PROGRAM OFFICE)

C-2

SOFTARE DEVLoPMIENT PROJECT SUMMARY DATA FORK

1. Project Name: __________________Date:_______

2. Development Contractor /Organization: _______________

3. Project Description

3.1. Mission description:___________ ____________

3.2. Major Hardware Interfaces:______ _______________

3.3. Major System Functions: ______________________

3.4. Major Software Functions: _____________________

3.5. Number of CSCIs: ____

3.6. Computer Software Configuration Item (CSCI) Names:

3.7. System User:
Development Contractor [] Other Commercial Company
Department of Defense [Other Government Agency I

P 1 3.8. Relative Magnitude of the Software Effort

Percent of the entire hardware/software system development cost
allocated to software ___

3.9. List the Software Development Standards that apply to this
development. (They are often listed in the contract or CPDP.)

C-3

SOFTARE DEVELOPMENT PROJECT SUMMARY DATA FORN

4. Project Milestones:

Milestone Contract Estimate Actual
Date Date Date

4.1. Contract Award
4.2. System Requirements Review (SRR)
4.3. System Design Review (SDR)
4.4. System Preliminary Design Review (PDR)
4.5. System Critical Design Review (CDR)
4.6. Start CSCI Integration into System
4.7. Complete CSCI Integration
4.8. Start Dev. Test & Evaluation
4.9. Complete Dev. Test & Evaluation
4.10. Start Init Operational Test & Evaluation ...
4.11. Complete Init Operational Test & Evaluation
4.12. Functional Configuration Audit
4.13. Physical Configuration Audit
4.14. Formal Qualification Review
4.15. System Delivery

5. Modern Development Method Use
(0 = No Use; 1 = Beginning, Experimental Use; 3 - Reasonably

Experienced; 5 = Expert)

Method 0 1 2 3 4 5
No VLo Lo Nom Hi Vhi

Structured Requirements Analysis liii [iii! I
Specification Type

Functional [[I I [[I
Procedural [] [[1(1 [11
Eng l ish [[I [I [I
O th e r I [I I [[]

Design
Top Down
Bo ttom Up
Objec t O rien ted I I I I I I I I I I I
Iterative Enhancement
Ha rdes t Firs t
O t h e r ...
None

Program Design Language (PDL)
Ada
Conventional I

Development
Top Down
Bottom Up
,lera l'-e Enhanemeni'
Hardest Firs-
('r h e r 1 r
None

SOPTVARE DEVELOPMNTf PROJECT SUNNARY DATA FORM

0 1 2 3 4 5
No VLo Lo Nom Hi Vhi

Coding
Structured Code l[t] I i ll I
Other ... 111111111
None

Program Librarian [[I [I I I I I
Team Development Strategies

Two-person I[III [II[I[
-* Multi-person Democratic [[[J [I [J []

Chief Programmer I[[][I [[
O ther ... [[[] [] [I []

Testing
Specification Driven 1[11111111]
Structure Driven I [I] I] [] []
O ther ... [[I I I f I I
None

Validation/Verification (Inspection)
Walk-Throughs I I [I I []] []
Proof of Correctness IJII[III[[II
Other ... IJIIIIIIII I
None

Project Estimating and Control I i I I I I [I [i I
Rapid Prototyping I 1 [1 I 1 l
.. I[i I

6. Software Quality Required 0 1 2 3 4 5
No VLo Lo Nom Hi Vhi

6 .1. Usability [I [I [I 1
6 .2. Reliability I I [I [I [I
6.3. Efficiency I I I J I
6 .4. Integ rity
6 .5. Testability
6 .6. Portability
6 .7. Correctness
6 .8. Maintainability
6.9. Reusability
6 10 . Interoperability

Software Change History
Number Est Fs '

Changes DSLOC Per corr~ e
Approved

Detai led oinPDin-)
(0d1 4 ' ts (D o '- a l T ,, 4 i - g

To ,f a ! 4 T

"a Fm nn, !a F rid

SOFTWARE DEVELOPMENT PROJECT SUMMARY DATA FORK

8. Comments:

4%a V IJ F

*11

is u

z -.

CL0

b. c

c AL

0 - v
b. c~ CCc6,w0

C..

CL

40 f0 C.6
-0 ' ,

L. C w0

c a " 0IL 0 L0v Saa(

-A -6 - v14
0 V~ -C 6. 40 CL C6a C66-b

I- 0 "w"C U I

z 1 to v -
Go *ug w- 'S-

zUU~- CCU i

DEVELOPMENT COMPUTER SYSTEM AND TOOLS DATA FORN

1. Development Contractor / Organization

1.1. Name:

1.2. Location:

2. Project Name:

3. Development System Attributes

3.1. Development Computer Mfgr Model
3.1.1. Main Memory Size (Words)
3.1.2. Word Size (Bytes)
3.1.3. Maximum Main Memory Size (Words)
3.1.4. Is this a Virtual Memory machine (Yes or No)
3.1.5. CPU Processing Speed (Mips)
3.1.6. Average number of people per terminal

3.2. Percentage of Source Instructions developed using each of the
following
access modes (Total-100%):

3.2.1. Batch %
3.2.2. Dedicated Processor Z
3.2.3. Test Bed with High Priority %
3.2.4. Test Bed with Low Priority %
3.2.5. Interactive Z
3.2.6. Other: %

3.3. Software Development System

Estimate

Rating Min Most Max Actual
Likely

3.3.1. Turnaround Time No Recompile (hours)
3.3.2. Turnaround Time Recompile Required (hours).

3.3.3. Terminal Response (seconds)
Variable or Consistent

3.3.4. Number of-jor Changes per Month
3.3.5. Number of Minor Changes per Month

3.4. Hours the Development System Operates

3.5. Percent of Development System Operation Hours Available to Development
Organization

3.6. Development System Security Classification Level

I
SC-8 "

. -. . - -. .~
• " " " " " "' " • " . , '-4'°," • -, ° .° -

' ° ° "
' ' .. .

" " " ' ° '
" -"

% o
"

°
" % - -. ' ."-"

o '

is 0

- C

C5
w L 45t

C' 6~ 2c CL-- aa C

-U-. C4 1 1- , Cr 0 r-
U, '-.*' It Ina3

0-.-- -a ' J a3 3 , 4

Si-

p--

II
iii

I ,

h I

~s.

.

.'..1'- . - . , • - - ,-,I- . ' .-- " " -, ,

DEVELOPMENT COMPUTER SYSTEM AND TOOLS DATA FORN

5. Development Locations

5.1. Number of Development Sites ____

5.2. Development Computer and Site Locations

Site Locations Computer Locations

6. List the CSCIs Developed on this Development Computer:

* 1. __ _ _ _ _ _ _ _ _ _ _ 2. __ _ _ _ _ _ _ _ _ _ _ 3. _ _ _ _ _ _ _ _ _ _

4. __ _ _ _ _ _ _ _ _ _ 5. __ _ _ _ _ _ _ _ _ _ 6. _ _ _ _ _ _ _ _ _

10. - 11. _ _ _ _ _ _ _ _ _ __12. _ _ _ _ _ _ _ _ _ _

*7. Comments

d- b- Nd--j' Ni-1 ---rJ - -j . . r~ i17

TARGET COMPUTER SYSTEM DATA FORM

1. Development Contractor / Organization

I.I. Name:

>,2. Location:

2. Pro'ect Name:

3. Target System Attributes

3.1. Target Computer Manufacturer Model

3.1.1. Main Memory Size (Words)
3.1.2. Word Size (Bytes)
3.1.3. Number of Processors in the Target
3.1.4. Maximum Main Memory Size (Words)
3.1.5. Is this a Virtual Memory machine? (Yes or No)
3.1.6. CPU Processing Speed (Mips)
3.1.7. Reserve Memory Requirement (percent)
3.1.8. Reserve Timing Requirement (percent)
3.1.9. Programming Language(s) Implementation

(if different than the development computer)
3.1.10. Difference Between Development and Target Computer:

.1.21. Accessibility to Target
(limited to freely accessible)...................

.2. Target simulator Size, in words (if needed)

Thanges to the Target Computer System During Software Development

Estimate

Rating Min Most Max Actual
Likely

'rmber nt Major Changes per Month
N.mber cf Minor Changes per Month

nc!rrent Hardware Development With the Software? Yes[] No[]

," e '.SC's Executed on the Target Computer:
2. -3.

~6.
~9.

_ _ _ _ 12.

.< ,, . .. Ta: ' , .r, its Development, Use, Availability.

~e: a-

COMPUTER SOFTWARE CONFIGURATION ITEM SUYMARY DATF FORM

1. CSCI Identification

1.1. CSCI Name: Date:

1.2. Development Contractor / Organization:

1.3. Project Name:

2. CSCI Functional Description:

2.1. Operating Environment

Production Center, Internally Developed [J Military Ground (I
Production Center, Contracted Software [J Unmanned Space
Military Mobile (Van or Shipboard) I] Manned Space [I
Commercial Avionics [I Mil-Spec Avionics [I
Other

3. CSCI Schedule Data

3.1 Milestones

Milestone Contract Estimate Actual
Date Date Date

3.1.1. CSCI Development Start (Draft B5)
3.1.2. S/W Specification Review (SSR)
3.1.3. Preliminary Design Review (PDR)
3.1.4. Critical Design Review (CDR)
3.1.5. Start Coding/Debugging
3.1.6. Complete Coding/Debugging
3.1.7. Start Informal Test/Integration
3.1.8. End Informal Test/Integration
3.1.9. Preliminary Qualification Test (PQT)
3.1.10. Test Readiness Re%l.ew (TRR)
3.1.11. Formal Qualification Test (FQT)
3.1.12. Product Specification Approval
3.1.13. Functional Configuration Audit (FCA)
1.1-14. Physi, al Configuration Audit (PCA)

O ther

3.2. Schedule Acceleration/Stretchout Assessment:

<75% C I 75-85% [1 86-95% [] 96-105% [] 106-115% []
116-125% [1 126-135% [1 135-160% 1 1 >160% [

C-13

* ~ ~~~ It4 P . ' . - 4.

* * 9 9Ali

a it '14.

r~i p

In ~ -4*. -, * -

* 9, *. *. -

144

r1wP~rU 'vOMYAA3 C:0FfP(UATION ITEMI SUMMARY DATA FORM

A. P zP ee ,,I P ' P 'P 'I -'M

~e ~e .' ' I p .'.)ns PDL Lines I

'urrent Estimate
W" ax min Most Max

Likely Ar (ji

pot 1 ')&~ R@-;prrC Requ ir ement s (~of 7. 1.1. 1.; Total 100%O)

Po. 7:Te On-Line %___

.mev -'nirained Non-Time-Critical %_

.re'2astemcnt Mix

'a,@ment 7'ipvs oZ f '.I.. Total.- 100%)

a. (mmand % Mathematical
a' a ar. p Ia I in Data Typing _ %__ Declaration ___

Al a asit g T Invocat ion

',,rvIode Mix Toral (Iode I QOOt

e ()ee ,p9p % Code 7 New Design %New Code

pora~ing S'ys'ems

-),Pa ie Ipera r ions...................____
Reai Time 'Lommand j Control

,r L'.n* "omuunlilt ~1 __ __._..

)ata 'Anrag* 6, Retrieval ____

-,rng Manipulation...............................-_

'4a~hetati-al 0perations

',ner __

C-15

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM

7.1.4. Target Computer Impact on Source Code
Estimate

-K. Rating Min Most Max Actual
Likely

7.1.4.1. Memory Constraint Percent
7.1.4.2. CPU Time Constraint Percent
7.1.4.3. Real-Time Operation Percent
7.1.4.4. Multi-processor Percent
7.1.4.5. Multi-target Percent

7.1.5. CSCI Reused Code From Other Projects

Size Component Estimated Actual

7.1.5.1. Total Pre-Existing
7.1.5.2. Total Deleted

7.1.5.3. Total Modified
7.1.5.4. Percent Re-Design Effort

7.1.5.5. Percent Re-Implementation Effort
7.1.5.6. Percent Re-Test Effort
7.1.5.7. List of projects which contained the re-usable cod

7.2. Function Point Data (if automated counting tool is available)

Parameter Estimated Actual

7.2.1. Number of Inputs
7.2.2. Number of Outputs
7.2.3. Number of Inquiries

7.2.4. Number of Data Files
7.2.5. Number of Interfaces
7.2.6. Total Number of Function Points

7.3. Size/Complexity Data (if automated counting tool is available)

7.3.1. Number of Ada Objects

7.3.2. Number of Ada Program Units

7.3.3. Number of Layers of Ada Program Units

7.3.4. Number of Blocks

8. Data Base Size (if automated counting tool is available)

Parameter Estimated Actual

8.1. Total Data Base Size (Words)
8.2. Total Unique Data Items

8.3. Total Number of Records

8 .4. Unique Data Types

C- 16

, """d/ Z : . -. "2,.< =i'.F. - L ' > ."- .<. ',.- = =i

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMART DATA FORM

9. Special Display Requirements (Check 1)

Simple Inputs/Outputs
User Friendly Error Recovery and Menus

Interactive (With Pointing Device)
Complex (Such as Cad/Cam)
Other (Indicate)

10. Software Failure History (Errors Per Phase)

Req'mnts Design Implement Total
Errors Errors Errors Errors

10.1. Preliminary Design (C/A to PDR)
10.2. Detailed Design (PDR to CDR)
10.3. Code & Debug (CDR to Start T & I)..
10.4. Test & Integration (Start T&I-FOT).
10.5. System Test/IOC (FQT to Cont. End).

11. Software Change History
Number Est. Est.
Changes DSLOC Personnel
Approved +/- /-

11.1. Preliminary Design (C/A to PDR)
11.2. Detailed Design (PDR to CDR)
11.3. Code & Debug (CDR to Start Test & Integ)...
11.4. Test & Integration (Start T&I to FQT)
11.5. System Test/IOC (FQT to Contract End)

12. CSCI Development Attributes

12.1. Development Environment
Estimate

Rating Min Most Max Actual
Likely

12.1.1. Resource Dedication (percent)
12.1.2. Resource/Support Location (miles) --

12.1.3. Security Level of CSCI..................
12.1.4. Contract Type

CPFP CPIF FFP FPIF OTHER
Prime Contract Subcontract

r,

r
i

COMPUTER SOTVARE CONFIGURATION ITEM SLJAT DATA FORM

(Rat ing ScalIe: N'(w N, F. ha ; i Th t igh 'h~ i ar i -a'I

Goal I

Ne "T o I) Nom H ;t

12.2.1. Maximum Maintainabilir
12.2.2. Maximum Reuse ot Pre-Existing S/14..... i I I I I I I
12.2.3. Maximum Reusability of CSCI Level End

Products On Future Developments [I i] [1
12.2.4. Maximum Reusability of TLCSC End

Products On Future Developments I I I [[
12.2.5. Maximum Reusability of LLCSC End

Products On Future Developments [] [] [I [I I I
12.2.6. Maximum Output Clarity [I I I I I 1 I I I
12.2.7. Maximum Use of Off the Shelf S/W I I I I [I I I] I
12.2.8. Language/Tool/Method Evaluation I I [] I] [I I [

O th e r [I I I I [I [

13. Special Ada Features
If Used, is there an
Internal Standard?

Feature List Avoided Used (Y or N)

Ada Tasking
Derived Types
Generics
Overloaded Operators
Other
Other

14. Special Problems or Comments:

c 18

zZ.

c 0

Id

U •r I I.

II I
C °

- :

*-1

b. w CL 9

"C U1 -C 6 O r0a"

'r & C vI~

C, iC

-C 1

()mPLrr SOFTWARF SIZE SUIMMARY DATA FORM

• .-u (e Line ,t ' ..,' eneraes object code)

?at iage Re izi ,; 'emicolons I I PDL Lines

her (Specif v_ _

.Ze r " I f 'SC Nor -. ,

tS(C Name Firi ti-
'otal ze exf hiding cmments and , nrat-ion_ _

Comments anid Do(. ", ber of Machine Words

Size Reused ;ze to be Reusable

Pre exist ing 'ode Size - ds to Pre-existing

I of Function Points '.nmber of Ada Objects
Number nt Packages Nin her of Tasks

Number I't Blro(ks l.ayers of Blocks

0 of Ada Program Units a'et Ada Program Units
Number -t Ada Statements -ariguage

The valesv ',)i his ('SC are: Esrma'r,,, Actuals

CSC Name F, n(,)n

Total size excluding o-nmments and ,i e-p:ratlon.

(ommenIs and Doc. Nimber of Machine Words
S ize Rellned 'e to be Reusable

Pre existing C'',e 5 ize -rld - Pre existing
i of Fun(tion Points ,,rher of Ada Objects
Number ,f Packages or he4 f Tasks

Number of Blocks ..,ers of Blocks

of Ada Program Units ,.'es Ada Program Units

Number ot Ada Statements '.__g,]age

The values for 'his CSC are: Estimao" Actuals

(' Name, Func t ion
Total size excluding Comments anI 7, ,'At ' on
Comments and Doc. *-', I of Ma h1ne Wotds
5 ize Reused :p to he Peusable
Pre-existing Code Size ,s 'o Pre-ex1sting
0 of Function Points .- her ot Ada Obje 's

Number ot Packages ',er, e Iof Tasks
Number of Blocks .et of Blocks

U of Ada Program Units i epr Ada Program Units

Number of Ada Statements . iage
The values for this CSC are: Estima , Aitual

" " . . . '" " , *e ." """ .. , -

COMPUTER SOIrVARE SIZE SUMMARY DATA FORM

CSC NameFunction '
Total size excluding Comments and Documentation ,
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
0 of Function Points Number of Ada Objects

Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
* of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name'Function

Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable

Pre-existing Code Size Mods to Pre-existing
0 of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
* of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
0 of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
0 of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
0 of Function Points Number of Ada Objects
Ntimber of Packages Number of Tasks
Number of Blocks Layers of Blocks
0 of Ada Program Units Layers Ada Program Units
Nu~mber of Ada Statements Language
The values for this CSC are: Estimates Actuals

C-21

, "-> % .mber of..da.Statements.-:_...__.__. Language. '..'..'.'. __..:____._._-_.-'_-_.." ,>. .', . .'

COMPUTER SOFTWARE SIZE SUMMARY DATA FORM

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

C-22

COMPUTER SOFTWARE SIZE SUMMARY DATA FORM

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
* of Function Points Number of Ada Objects
Number of Packages Number of Tasks _

Number of Blocks Layers of Blocks ,
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada ObjectsNumber of Packages Number of Tasks

Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSC Name/Function
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
of Ada Program Units Layers Ada Program Units
Number of Ada Statements Language
The values for this CSC are: Estimates Actuals

CSCI Total
Total size excluding Comments and Documentation
Comments and Doc. Number of Machine Words
Size Reused Size to be Reusable
Pre-existing Code Size Mods to Pre-existing
0 of Function Points Number of Ada Objects
Number of Packages Number of Tasks
Number of Blocks Layers of Blocks
0 of Ada Program Units .avers Ada Program inws
Number of Ada Statements Language
The values for this CSC are: Estflate Actuals

C-2 3

,1

RESOURCE EXPENDITURE DATA

B F N7

AFTER
()NTRAt-(

A W AR

TA

RESOURCE EXPENDITURE DATA

26

r.

37

7T

-- V. ----

,.": " ""- "" . "-. - """' ","- .""..,- . " - , ," .. ,". 2 . . _. .-.- .. , . - ., . - , ,

-' -- .-1- , -'- -~ - -. Y* -' . - .-.- ~ - . - ~ - -~ --.-- u~... y~

RESOURCE EXPENuiIUR DATA

P _ _ _ _ _-_ _ _ _ _ _

I I

_ _ _ _ _ _ _ _ _ _

I I

I I-fts ml A PUN FOR COLLECTIN AN SOFTNUE DEWELWIWI COPST
I SCHEDULE AND ENYIPMIU. (U) TECOLOTE REEMCH INC SNITA
I SARR CR N J IRENNER ET AL. 62 IPE 67 CR-SI341I

t WCLRSSIFI EDESD-TR- 67 ±6F19626 - 64- DWF/ 12/5 ML

- -- .. - •

-5-

. I
....

1 3
, O . . d...

.-.~ '- .:

11111 /1*Q ~

*...
.

_ _' 9 221

(1(111.25 ".1\ 2A= \11
I.f"f."- ." I

•p ". . "

,.-r.%

" 5.' o. .

r, r '.,', ," - - ," ,,, ,',','' ' ,'.'.., " ",'.'., ." ,,."*.'" ..•..'. ".. '.'..'_ .''.'"." ', ".' .' ."• ., ,' ,' ,C

q/ ,, ~.. . , , , ,,...,, . .
, , . .• . . , • . _ • %

| • • • • • • • • • • • • • -- !

% *" % '*i'" *"
* ° °

"
%

. ° "
- %

•
"

°
"" *"

"
'""'

° "
"

''
-

"
"" '"

+ '
'" " "

%
'" "° °" "J "% " "

* "
°"

%
°

°
" % % % %

%
""

1 ..,. %°% ..% ,
.

.. . .• '. . . ,. . ,% . . . , , " • .. % .,. ..% % %.4 .

INSTRUCTIONS

ESD ADA SOFTARE DMVLOPKMIT DATA COLLECTON FORMS

C-27

SOFTWARE DEVELOPMENT PROJECT SUMMARY DATA FORM INSTRUCTIONS

1. Project Name and Date

Enter the name of the project and the date this form is being completed.

2. Development Contractor/Organization

Identify the company or organization which is actually performing the

software design and development.

3. Project Description

3.1. Mission Description

Describe the overall mission or purpose of the system for which the
software is being developed.

3.2. Major Hardware Interfaces

Identify the major hardware components which the software will interface.
For example: radars, communications equipment, sensors, other embedded
computer systems, etc.

3.3. Major System Functions

List the major functions performed by the system.

3.4. Major Software Functions

List the major functions performed by the software.

3.5. Number of CSCIs

Enter the number of Computer Software Configuration Items (CSCIs) into
which the system is divided.

3.6. Computer Software Configuration Item Names

List all of the CSCI's which are a part of this project.

3.7. System User

Indicate the user for whom the system is being developed.

3.8. Relative Magnitude of the Software Effort

Often, software is a portion of a system development that includes
hardware. Indicate the fraction of the system development cost allocated
to software.

J

C-28

SOFTVARE DEVELOPKMNT PROJECT SUMMART DATA FORK INSTRUCTIONS

3.9. Software Development Standards

Indicate which DoD and individual service standards were applied to the
software development.

4.1. - 4.15. Project Milestones

Identify the software milestones for the project. Enter the contract
schedule date for each applicable milestone (enter N/A if a milestone is
not applicable). If the milestone has not yet passed, enter the expected
date. Otherwise, enter the actual date the milestone was passed. Although
these milestones represent formal contractual activities in the Department
of Defense software acquisition process, many non-defense projects will
have milestones which are equivalent to these, e.g., contract award is
equivalent to project start and critical design review is equivalent to
completion of detail design.

If the formal milestones are not required in the project schedule, data for
equivalent activities should be used. Definitions of these milestones are
provided in Attachment A of these instructions. Unless otherwise
indicated, the date should reflect the activity completion date. Where
available, enter the actual date of completion for the milestone; for
ongoing efforts, enter the current estimate for completion of the
milestone.

5. Modern Development Method Use

Select the rating which best describes the use of listed Modern Development
Methods.

0 No use of Method
1 Beginning, experimental use of Method
3 Reasonably experienced use of Method
5 Expert use of Method

6. Software Quality Required

Rate the software quality required for this project in each of the
categories.

6.1. Usability

Usability is the extent to which the system is convenient and practical to
use.

6.2 Reliability

Reliability is the probability that a system will satisfy its stated
operational requirements for a specified period of time.

C-29

% VV

SOFTWARE DEVELOPMENT PROJECT SUMMARY DATA FORM INSTRUCTIONS

6.3. Efficiency

Efficiency is the extent to which a system fulfills its purpose without
wasting resources.

6.4. Integrity

Integrity is the degree to which one subsystem can protect the operation of
another subsystem.

6.5. Testability

Testability is the ease with which tests can be planned, specified,
conducted, and analyzed for a system.

6.6. Portability

Portability is the extent to which a software system can be moved from one
computer to another.

6.7. Correctness

Correctness is the degree to which a system fulfills its system
requirements.

6.8. Maintainability

Maintainability is the degree to which a system facilitates the making of
modifications during it's life.

6.9. Reusability

Reusability is the degree to which selected modules from one system can be
used in another system.

6.10. Interoperabillity

Interoperability is the ease with which one software system can be coupled
with another system.

7. Software Change History by Phase

Enter the number of changes which occurred during each completed
development phase, the net increase/decrease in the total system delivered
source lines of code count and the net increase/decrease in the estimated
manpower for the software development effort.

If this information is available at the CSCI level, then provide the
answers on the CSCI forms and skip this question.

C-30
U

SOFTWARE DEVELOPMENT PROJECT SUMARY DATA FORM INSTRUCTIONS

8. Comments

Please provide any additional information about events that affected this
software development effort as an aggregate. There is a separate comment
section for events that affected individual CSCIs.

I

C-31

S%
S
g

S.

SYSTEM LEVEL OR CSCI LEVEL DOCUMENTATION PORN INSTRUCTIONS

This form is used to report the size and quality of the system level and
(SCI level computer software documentation. Use one copy for the system
level documentation, and additional forms for the documentation associated
with each CSCI.

Check off whether this form is being used to report system level or CSCI
documentation.

I. Supply the name of the project and the date that this form is being
filled out.

2. Identify the development contractor / organization that is developing
the software system cr CSCI for which the documentation data are being
reported.

3. If the data are being reported for a CSCI, identify the CSCI.

4. For each applicable document, check whether the document was provided by
the Government or another agency, or whether it was written by the
development contractor / organization. If the document was provided and
then rewritten by the software developer, check both columns.

Indicate the quality of the document. The rating scale is:

Very Low 1
Low 2
Nominal 3
High 4
Very High 5

If the document was written by the development organization, indicate the
date it was completed. Completion date here implies the document was
available for use in the software development effort.

Finally, supply the estimated or actual number of pages.

If documents were produced that are not listed, list them under "Other.

C-32 S

* ." """ " " " " ""

I V V- I. V. -- w

DEVELOPMENT COMPUTE STSTEN SUMMART DATA FORM INSTRUCTIONS

1. Development Contractor / Organization

1.1. Name

Identify the company or organization which is actually performing the
software design and development using this development system.

1.2. Location

Enter the location of the company or organization which is actually
performing the software design and development using this development
system.

2. Project Name

Enter the name of the project.

3. Development System Attributes

3.1. Development Computer Manufacturer and Model

Enter the development computer manufacturer and the model number of the
computer.

3.1.1. Main Memory Size

Enter the main memory size, in words, for the development computer.

3.1.2. Word Size

Enter the word size (in bytes) of the development computer.

3.1.3. Maximum Main Memory Size

Enter the maximum main memory size, in words, for the development computer.

3.1.4. Is this a virtual memory machine? Answer yes or no.

3.1.5. CPU Processing Speed

Enter the CPU processing speed, in millions of instructions per second
(MIPS), for the development computer.

C-33

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

3.1.6. Average Number of People Per Terminal

Enter the average number of people sharing a terminal.

3.2. Percentage of Source Instructions developed using each of the
following access modes (Total=100X).

Enter the percentage of source instructions developed using each access
mode defined below:

3.2.1. Batch

Processing of a group of items prepared or required for one or more related
operations with no provision for unscheduled interruption.

3.2.2. Dedicated Processor

The processor is completely dedicated to this development.

3.2.3. Test Bed with High Priority

Development facilities set aside for target system simulation, developers
have high priority access.

3.2.4. Test Bed with Low Priority

Development facilities set aside for target system simulation, developers
have low priority access.

3.2.5. Interactive

Usage of a computer via a terminal where each line of input is immediately
processed by the computer.

3.2.6. Other

Enter any other computer access modes used in the development of this CSCI.
and the percentage of code developed in that mode.

3.3. Software Development System

For the following questions, respond with the range of the estimated
average value, or the actual average value.

3.3.1. Turnaround Time No Recompile

Enter the amount of time, in hours, that it takes from logon until you
receive a hard copy. This measures the time lost while dealing with the
development computer (logging on, commanding actions, waiting for a
response on a multi-user system, waiting for slow printers, delivery of

C-34

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

printouts from remote printers, etc.). It does not include the productive
time a project member may spend reading program listings, editing programs
or text, etc.

3.3.2. Turnaround Time Recompile Required

Enter the amount of time, in hours, required to compile a program.

3.3.3. Terminal Response

-Indicate the number of seconds from the time you hit the Return (Enter) key
until the terminal responds. Also check whether the response time is
variable or consistent.

3.3.4. Number of Major Changes per Month

These may be changes in the program editors, compilers or other tools,
changes in the command languages, or changes in the target hardware. Each
change may cause developers to lose time due to learning the system,
changing their code, procedures, etc. Some virtual machines have been used
for many years without changes, and no changes are expected.

Indicate the average number of major changes per month. Include fractional
values.

3.3.5. Number of Minor Changes per Month

Indicate the average number of minor changes per month. Include fractional
values.

3.4. Hours the Development Computer System Operates

Indicate the daily hours of operation of the development computer system.

3.5. Percent of Development System Operation Hours Available

Enter the percentage of hours indicated in 3.4. that the development
computer will be available to the development organization.

3.6. Development System Security Classification Level

Indicate the highest security level the development computer system is
cleared to.

4. Development Computer System Tools

This question seeks information on the automated tool sets available on the
development system, and on methods used for which there was not an
implementing computer program.

C-35

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

Indicate vhether an item was uses manually (i.e. a method) or as an
automated tool.

If the tool or method was used, indicate the frequency of use using the
following scale:

1 Very Low
3 Nominal
5 Very High

If the tool or method was used, rate the development team's experience with
the tool or method as of the first use on this project.

0 No use of the tool
1 Beginning, experimental use of the tool
3 Reasonably experienced use of the tool
5 Expert use of the tool

If the tool or method was used, indicate the phase or phases when the tool
or method was used. (Documentation is not a phase but is included because
it is believed to be important).

1 Requirements Development
2 Preliminary Design
3 Detailed Design
4 Code and Unit Test
5 Test and Integration

6 System Test
7 Maintenance
8 Documentation

If the tool or method was used, list the CSCIs affected. Indicate the CSCI

by using the number designation from question 6.

Finally, if the tool or method has a 'brand name', please identify it.

5. Development Locations

5.1. Number of Development Sites

Enter the number of different development locations for this CSCI.

5.2. Development Computer and Site Locations

List the site and computer location for each separate development site.

C-36

DEVELOPPIJIKT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

The tool definitions are:

Assembler - 'ranslates a program expressed in an assef-bl'/
%'anguage into object Qode

Assembler Options -- features of the assembler that provide
additional capabilities such as listing assembler
source, listing errors, inserting debug hooks.
and collecting statistics

' Body Stub Generator -- creates null bodies for specifications
requiring bodies whose bodies have yet to be
specified (i.e., top-down construction)

Change Impact Analyzer -- determines, for a proposed support or
enhancement operation, the impact of proposed
changes to the software system.

Change Request Analyzer -- analyzes change requests to determine
necessity of the change, technical and economic
impacts, and approach to accomplishing the change

Code Auditor -- examines whether predefined rules have been
followed (such as coding standards)

Code Interface Analyzer -- checks the interfaces between coded
program elements for consistency and adherence
to predefined rules

Code Invocation Analyzer -- checks coded modules for determining
the calling relationships between elements

Command Language Processor -- converts command language constructs
into functions performed by an operatirg system

Compiler Code Generator -- transforms the intermediate language
form of a computer program into machine linguage

Compiler Options -- features of the compiler that provide
additional capabilities such as source listings,
error listing, conditional compilation, inserting
debug hooks, optimization, collecting statisics,
reordering compilation units, tracing, allowing
compiler or heap space

Constraint Evaluator -- generates and/or solves path input or
output constraints for determining test inp.it -r
for proving programs correct

Control Flow Tracer -- records the -urce statements and r,

nranches that are exec ued :n a progra- :n 'heir
execution order

A

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

roverage, Frequency Analyzer -- determines and assesses measures

associated vith the invocation of program
structural elements to determine the adequacy of

test run. Typically, coverage measures are in
terms of statements, branches, paths, or modules
executed by certain data sets.

Cross Referencer -- logically references entities to other entities

Data Flow Analyzer -- checks the sequential patterns of definitions
and references of data, based upon the use of
program control flow

Data Flow Tracer -- monitors the current, actual state of variables
in a program

Da'a Type Analyzer -- evaluates whether the domain of values
attributed to an entity is properly and consistently
defined

Debugger -- steps through a program, allowing the examination
and setting of values

Design Analyzer -- checks the interfaces between designed program
elements for consistency and adherence to predefined
rules, usually based upon the contents of the design
database

'egn Dorument ,enerazor -- collects information and generates
! rumentation in a military-specification format

!-r design documentation

*. ,.r. .anrgage Processor transforms formal design language
-rsrrucs ,nto an internal database representation

for subsequent analysis

e P : ? p, e= rapidly constructs critical functions of a
,:.s'em to determine the best design approach

•e .".e Asser'.-n hecKer hecks user-embedded statements

'cat assert relationships between elements of a
?rogram. An assertion is a logical expression
.,at specfes a condition or relation among the
:0 gram .ar:aLes. 1'hecking may be performed vith

-)I , n-t:me data.

,-/'.: 's a ,aa P'. yaF" c.ock, or other
3 -a'ed .i1h sxecut;ng parts of a program

.-. . . . e : a. :ec- rd ot program

-.-.-
"' t ';

-
' "n

- " >
': " iI "

"
.5 *1 .: : :"

t.* ' - "

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

Formatter -- arranges text according to predefined and/or user-
defined conventions

Formal Verifier -- uses rigorous mathematical techniques to
prove the consistency between an algorithmic
solution and a rigorous, complete specification
of the intent of the solution

Graphics Editor -- has editing capabilities provided for graphical
data

Graphics Generator -- provides the input, construction, storage,
retrieval, manipulation, alteration, and analysis of
pictorial data

Interactive Debugger -- performs debugging activities at the
direction of a user %

Intermediate Language Generator -- transforms a source program
into an intermediate representation

Interpreter -- translates a source program into some intermediate
data structure, then executes the algorithm by
carrying out each operation given in the
intermediate structure

I/O Specification Analyzer -- analyzes the input and output
specifications in a program, usually for the
generation of test data

Line Editor -- has editing capabilities that require input of a
line number and editing function indicator

Linker -- creates a load module from one or more
independently translated object modules or load
modules by resolving cross-references among the
object modules, and possible by relocating
elements

Macro Expander -- augments instructions in a source language
with user-defined sequences of instructions in the
same source language

Memory Dump -- the contents of storage (or a part of storage)
for a specific purpose, such as a safeguard
against faults, or in connection with debugging

On-line Assistance Processor -- a user interface feature that is %

part of the input/output process of a programming
support environment (such as error assistance,
on-line tutoring, etc.)

C-39

-P% ...

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

Physical Units Analyzer -- determines whether the units or
physical dimensions attributed to an entity are
properly defined and consistently used

Problem Report Analyzer -- analyzes problem reports for the
purpose of determining the validity of the
reported problem and corrective action

Program (Application) Generator -- constructs computer programs
using translation or interpretation, based upon
rules for data structures and control (as in 4th
generation languages)

Program Tuner -- determines what parts of a program are being
executed the most

Quality Analyzer -- measures specified quality factors for use
during the evaluation of software products (and
prediction of software quality) at key milestones
during development. Factors to be analyzed include:
efficiency, integrity, reliability, survivability,
usability, correctness, maintainability, verifiability,
expandability, flexibility, interoperability,
portability, and reusability.

Regression Tester -- reruns test cases which a program nas
previously executed correctly, in order to detect

2errors spawned by changes or corrections made
during software development and maintenance

Requirements Analyzer -- checks formally stated requirements to
determine their consistency and completeness

Requirements Documentation Generator -- collects information and
generates documentation in a military-specification
format for requirements documentation

Requirements Language Processer -- transforms formal software
requirements statements into an internal
database representation for subsequent analysis

Requirements Prototyper -- rapidly constructs critical functions
of a system early in the life cycle for purpose of
understanding the requirements. The constructed
code ma: be thrown away.

Scanner -- examines an entity sequentially to identify key areas or
;tructure

Screen Editor -- has screen-oriented editing capabilities, using
cursor keys ()r pointing device to move around a
full screen at a time

C 40

,"-'. -' ..-................ . .-

DEVELOPMENT COMPUTER SYSTEM SUMMARY DATA FORM INSTRUCTIONS

Sorter/Merger -- arranges items in a specific order

Source Converter -- modifies an existing program to enable it
to operate with similar functional capabilities
in a different environment

Statement Profiler -- analyzes a computer program to determine
statement types, number of occurrences of each
statement type, and the percentage of each
statement type in relation to the complete program

Structure Checker -- detects structural flaws with a program,
such as improper loop nestings, unreferenced
labels, unreachable statements, etc.

Symbolic Debugger -- performs debugging activities at the source-
language level

Symbolic Executor -- reconstructs logic and computation along
a program path by executing the path with
symbolic, rather than actual, values of data

Syntax-Directed Editor -- has editing capabilities that are sensitive
to the context in which they are applied, using
specific programming language templates based upon
syntactical inputs

Test Condition Analyzer -- processes formal requirements language
to determine data values to be examined and the
mechanisms to be used in the verification of
test results

Test Harness Generator -- produces programs that provides input
to and encapsulates outputs from a testable program
unit

Text Editor -- has editing capabilities for textual data

6. List the CSCIs developed on this development computer system.

7. Provide any comments that will further aid our understanding of the
effect of the development computer system on cost and schedule.

C-41

W A

TARGET COMPUTER SYSTEM DATA FORN INSTRUCTIONS

If more than one target computer system will be used, complete a separate
form for each.

1. Development Contractor / Organization

1.1. Name

Identify the company or organization which is actually performing the
software design and development using this development system.

1.2. Location

Enter the location of the company or organization which is actually
performing the software design and development using this development
system.

2. Project Name

Enter the name of the project.

3. Target System Attributes

3.1. Target Computer Manufacturer and Model

List the manufacturer and model number of the target computer for this
CSCI.

3.1.1. Main Memory Size

Enter the main memory size, in words, for the target computer.

3.1.2. Word Size

Enter the word size of the target computer.

3.1.3. Number of Processors in the Target

Enter the number of processors in the target computer.

3.1.4. Maximum Main Memory Size

Enter the maximum main memory size, in words, for the target computer.

3.1.5. Indicate if this is a virtual memory machine. Answer yes or no.

3.1.6. CPU Processing Speed

Enter the CPU processing speed, in millions of instructions per second
(MIPS), for the target computer.

C-42

TARGET COMPUTER SYSTEM DATA FORM INSTRUCTIONS

3.1.7. Reserve Memory Requirement

Enter the reserve memory requirement for the target computer as a

percentage of main memory size (3.1.1.).

3.1.8. Reserve Timing Requirement

Enter the reserve timing requirement for the target computer as a
percentage.

3.1.9. Programming Language(s) Implementation

List the programming language(s) for the target computer if they are

different or if the implementation is different from that used on the
development computer.

3.1.10. Differences between Development and Target

List the differences between the development and target computer.

3.1.11. Accessibility to the Target

Indicate the access that the development team will have to the target
computer.

3.1.12. Target Simulator Size

Enter the size, in words, of the target :imulator.

3.2. Changes to the Target Computer System During Development

For the following questions, respond with the range of the estimated
average value, or the actual average value.

These may be changes in the program editors, compilers or other tools,
changes in the command languages, or changes in the target hardware. Each
change may cause developers to lose time due to learning the system,
changing their code, procedures, etc. Some virtual machines have been used
for many years without changes, and no changes are expected.

3.2.1. Number of Major Changes per Month

Indicate the average number of major changes per month. Include fractional
values.

3.2.2. Number of Minor Changes per Month

Indicate the average number of minor changes per month. Include fractional
values.

C-43

TARGET COMPUTER SYSTEM DATA FORM INSTRUCTIONS

3.3. Indicate if the target computer was developed concurrently with the
software.

4. List the CSCI's executed on this Target Computer.

5. Add any comments that will explain any unusual cost impact that can be
attributed to the use of this target computer.

'C-.

p.

C-44

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

1. CSCI Identification

i.I. CSCI Name and Date

Enter the name of the CSCI and the date the form is being completed.

1.2. Development Contractor/Organization

Identify the company or organization which is actually performing the
software design and development.

1.3. Project Name

Enter the name of the project containing this CSCI.

2. CSCI Functional Description

Give a brief description of the functions and purpose of the CSCI.

2.1. Operating Environment

Select the operating environment which best describes this CSCI.

3. CSCI Schedule Data

3.1. Milestones

3.1.1. - 3.1.14. Individual Milestones

Enter three dates for each milestone; the date specified in the contract,
the estimated date and the actual date (if the CSCI has reached the

milestone). If one or more of the milestones listed do not apply to this
CSCI, enter N/A (Not Applicable). For a detailed description of each
milestone, please see Attachment A.

3.2. Schedule Acceleration/Stretchout Assessment

Indicate the degree of schedule acceleration or stretchout that the
original (contract) schedule dates in 3.1. represent relative to the
normal time required to develop this CSCI. For example, if the specified
schedule is 24 months and the normal development time is estimated at 30
months, the schedule acceleration/stretchout is 80Z.

c-45

'." - "-.-. " " - ." ' .- " .." - .- • -. . . " . . " I ~ ~y

-. - - - - - - -. -

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

4. Personnel

4.1 Average Quality and Experience

4.1.1. Analyst Quality

Rate the Project analysts' performance as a team against all other
analysts, using the following scale:

15th Percentile Non-Functioning Team
35th Percentile Functional but Not Very Effective
55th Percentile Functional and Effective
75th Percentile Extraordinary
90th Percentile Nearly Perfect

Analysts perform the following functions:

- Defines the software architecture
- Creates preliminary design specifications
- Solves requirements or design errors
- Assists test planning and software testing
- Assists software integration
- Assists software/hardware integration

4.1.2. Programmer Quality

Rate how well the programmers working on the project will perform as a team
compared to all other programming teams in the world. Use the following
table as a guideline:

15th Percentile Non-Functioning Team
35th Percentile Functional but Not Very Effective
55th Percentile Functional and Effective
75th Percentile Extraordinary
90th Percentile Nearly Perfect

A programmer performs the following tasks:

- Defines the design details, ("code-to" design, PDL, flow charts,
etc.)

- Develops the programming language code
- Integrates the modules (units) into the software systems

4.1.3. Team Programming Language Experience

Enter the average number of years of programming language experience for
the entire CSCI development team. Programming experience measures how much
similar experience the team has acquired on the same or similar languages
by the start of Full-Scale Development.

The experience must relate to the same type of language as the one being
proposed. Language experience on unrelated languages must not be counted
in this experience evaluation.

C-46

~ ~ ~ .. ~ **J*~ *.p.N.

COMPUTER SOFTVARE CONFIGURATION ITEM SUMMART DATA PORN INSTRUCTIONS

4.1.4. Development Methods Experience

Enter the average number of years of experience the software development
team has with the modern development methods which are being used during
the development of this CSCI.

4.1.5. Development Virtual Machine Experience

Enter the average number of years of experience the software development
team has with the virtual machine. The virtual machine includes the
computer, the operating system, job control languages (commands given to
the computer to perform some task), automated tools such as text editors,
language compilers, etc. ard all the things the developers will use to
develop the software. The virtual machine can also include the target
computer.

4.1.6. Applications Area Experience

Enter the average number of years of experience the analyst team has with
the applications area for this CSCI. Application experience is the analyst
team's relevant experience in designing with similar applications. This
includes the team's experience at the time of system design review (when
the software requirements are reviewed).

An application is considered similar if it has similar types of functions,
goals, or inherent problems and the experience will be useful during the
project.

4.1.7. Support Software/Tools Experience

Enter the average number of years of experience the software development
team has with the software tools that will be used during the development
of this CSCI.

4.2. Average Formal Training

4.2.1. Formal Programming Language Training Days

Enter the average number of days the software development team has had in
formal programming language training in the language that will be used on
this CSCI.

4.2.2. Formal Development Methods Training Days

Enter the average number of days the software development team has had in
formal modern development methods training.

4.2.3. Formal Tools Training Days

Enter the average number of days the software development team has had in
form.1 tools training.

C-47

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

4.2.4. Formal Development System Training Days

Enter the average number of days the software development team has had in

formal development system training.

4.3. Peak Designer Staff

Enter the maximum number of people available for the designer staff.

4.4. Peak Programmer Staff

Enter the maximum number of people available for the programmer staff.

4.5. Peak Tester Staff

Enter the maximum number of people available for the test staff.

4.6. Maximum Staffing Rate

Enter the maximum rate, in persons per year, that people can be added to
the staff of this CSCI.

4.7. Overall Personnel Availability

Enter the percentage of time the development staff will be working on this
CSCI.

5. Reliability Requirement

Indicate the required reliability of the CSCI by marking the box which best
describes the reliability requirement.

Very Low 0 No Reliability requirement
Low 1 Low reliability
Nominal 2 Mil-Spec reliability
Very High 3 Reliability for high potential Loss
Extra High 5 Risk of Loss to Human Life

6. Complexity

6.1. Inherent Difficulty of Application

Complexity specifies the relative complexity (inherent difficulty) of the
specific software component. This complexity is independent of the
developer's ability to implement the CSCI.

C-48

* -. . - . - S * - ' o,

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

Select a value from the table below which best describes the complexity of
this CSCI.

Software Complexity Criteria

Data
Type Control Computational Device-dependent Management

Rating Operations Operations Operations Operations

Very Sequenced code with Evaluation of Simple read, Simple arrays
Low a few non-tested simple ex- write state- in main memory

SP operators: DOs pressions, e.g. ments with
CASEs, IF THEN-ELSEs. A-B C*(D-E) simple
Simple predicates.

Low Straightforward Evaluation of No cognizance needed Single file
nesting of SP moderate level of particular subsetting
operators. expressions processor of I/O with no data
Mostly single e.g., D-SORT device character- structure
predicates (B**2-4.*A*C) istics. I/O done at changes, no

GET/PUT level, no data edits,
cognizance of no inter-
erlap mediate files

Nominal Mostly simple Use of standard I/O processing Multiple input
nesting. Some math and sta- includes de- and single file
intermodule tistical rou- vice selection output. Simple
control. tines. Basic Status check- structural
Decision matrix and ing and error changes simple
tables vector oper- processing edits

ations
- -. -- --.. .

High Highly nested Basic numerical Operations at Special purpose
SP operators analysis: multi physical I/O subroutines
with many com- variate level(physical activated by
pound predi- interpolation, storage ad- data stream
cates. Queue ordinary dif- dress transla- contents.
and stack con- ferential tions, seeks, Complex data
trol. equations, reads, etc.) restructuring
Considerable Basic trunca- Optimized I/O at record
intermodule tion roundoff overlap level
control concerns

C-49

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

Very Reentrant and Difficult but Routines for Generalized
High recursive cod- structured interrupt parameter-

ing. Fixed numerical diagnosis, driven file
priority analysis: servicing, structuring
interrupt near-singular masking. routine. File
handling matrix equa- Communication building, com-

tions, partial line handling mand process-
differential ing, searc'.

equations optimization

Extra Multiple re- Difficult and Device timing- Highly coupled
High source sched- unstructured dependent dynamic rela-

uling with numerical coding, micro- tional struc-
dynamically analysis: programmed tures.
changing highly accu- operations Natural
priorities, rate analysis language data
Microcode of noisy management
level control stochastic data

6.2. Inherent Complexity of Data Structures

Rate the complexity of the data structures which will be used in this CSCI
using the following table:

Very Low 0 Simple data structures
High 3 Complex data structures

Extra High 5 Very complex data structures

6.3. System Integration and Test

*Select the type of system integration and test which best describes the

integration and test activities for this CSCI.

7. Software Size Description

7.1. Computer Software Configuration Item Size Information

Check the size format that will be used to answer all portions of 7.1. If
data are available for more than one format, xerox the pages of the data
collection form and repeat the questions for each format available.

7.1.1. Total Size

5 7.1.1.1. Enter the total size of the code, excluding documentation. Enter
the initial estimate, and either the current estimate or the actual values

if the project is complete.

C-50

-.. . .. , , - - -. .. . - -. . .. • - . • . .9; . .- : .-,.. .

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

7.1.1.2. Enter the size of the documentation. Enter the initial estimate.
and either the current estimate or the actual values if the project is
complete.

7.1.2. Operation Response Requirements

Indicate the response mode required in the operational system using the
following guidelines:

Real-time - The software must complete processing in response to an
event prior to the occurrence of the next event. Arrival of the
data and the occurrence of events is not under the control of the
software and extra effort in the design, test and implementation
of the software is required to satisfy time and processing
requirements.

On-line - Software in this category must respond within a human
compatible time frame, usually within a few seconds. Also
requires additional development effort, but not the extra level
required for real-time software.

Time-constrained - Software in this category must complete processing
within a specified time frame which is not as restrictive as real
time or on-line requirements. Time lines are in the order of
minutes or hours; sometimes a clock time is specified for
completion of processing.

Non-time-critical - There is no time constraint for completion of

processing for this category of software.

Indicate the type of format used to determine the size of this CSCI.

7.1.3. Source Statement Mix

7.1.3.1. Statement Types

Enter the percentage of the delivered lines of source code for this CSCI
for each of the statement types listed using the following guidelines:

Logical - statements which control the execution sequences in the
program dnd include constructs such as IF-THEN-ELSE, DO
WHILE, DO UNTIL, CASE, GO TO or CALL.

Command - statements which direct the system software to perform
specific functions or to create the environment required to
support the software. These statements are generally written in
a language specific to the computer hardware.

Mathematical - statements which perform computations. This category
includes coded equations for algorithms, vector algebra, modeling,
index computation, etc.

C-51

% . . . ° - %

COMPUTER SOFTARE CONFIGURATION ITEM SUMIAR DATA FORM INSTRUCTIONS

Data anipulat, cn - rate-enrt - : jet ,-r npu' a et f' p. . as .e.
aq "le storage, mov.emen, ain f , d -fca, Qn -f da'a F'r at
statements are also :nc..ded

Data Declaratr:n statements ' : h ate non execiuable and detrf e "ne
-haracterist>cs and values ot the data con'ained :n the pr,gra-.

Data Typing - statements which are non-execitable and define the
characteristics of the data 'ontained in the program.

Ada Tasking statements which are written to execute Ada tasking.

Invocation - calls to CSC modules and system procedures.

Indicate the type of format used to determine the size of this CSCI.

7.1.3.2. CSCI Source Code Mix

Enter the percent of the deliverable lines of source code that performs
each of the categories of operation defined below: ('% Code' is the
percentage of the entire CSCI size. '% New Design' is the percentage of
only the new code. '% New Code' is the percentage of the new code only)

Operating Systems - Task management. Memory management. Heavy
hardware interface. Many interac.ions. High reliability and
strict timing requirements.

Interactive Operations - Real-time man/machine interfaces. Human
engineering considerations and error protection are very
important.

Real-Time Command & Control - Machine-to-machine communications
under tight timing constraints. Queuing not practicable. Heavy
hardware interface. Strict protocol requirements.

On-Line Communications - Including machine-to-machine communications
with queuing allowed. Timing restrictions not as severe as with
real-time command and control.

Data Storage & Retrieval - Operation of data storage devices, data base
management, secondary storage handling, data blocking and
deblocking, hashing techniques. Primarily hardware oriented code.

String Manipulation -- Instructions dealing with movement, manipulation
and creation of consecutive characters.

Mathematical Operations - Routine mathematical applications with no
overriding constraints.

2..
q ..]

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

7.1.4. Target Computer Impact on Source Code

For the following questions, supply a range estimate or the actual value.

7.1.4.1. Memory Constraint Percent

Memory Constraint evaluates the anticipated effort to reduce memory usage.
Such economy is usually seen in overlapping/segmentation, special coding,
common memory management, and performance trade-offs.

Memory includes the computer's main storage for loading and executing
programs and temporary storage of data. Memory includes Random Access
Memory (RAM) Read Only Memory (ROM), core memory and similar program memory
storage/execution devices only. Memory does not include magnetic tapes,
disks, bubble memory used as a storage device, etc.

Indicate the percent of the CSCI that is subject to memory conservation

techniques.

7.1.4.2. CPU Time Constraint Percent

These time constraints are often required to meet overall system
performance requirements. For example, the software may be required to
respond to a user's request within one second. In such a case, the code
would be tuned to enhance performance in the areas that affect a request
from the user until such a request could be handled in under one second.

Indicate the percent of the CSCI that must have special attention to ensure
adequate time performance (not real time).

7.1.4.3. Real-time Operation Percent -'

If real time software does not perform within the time limits placed on it
by an outside source (usually hardware), information will be lost or
changed before the software can process it, or data may not be correctly
output to the device. Examples of this information are: a signal that is
received 1,000 times per second, information that must be received from a
communication network or lost, etc.

Indicate the percentage of the CSCI that must perform its processing
function within absolute time constraints (may be measured in l,O00ths or
lQ,OO0ths of a second or even less).

7.1.4.4. Multi-processor Percent

Indicate the percent of the CSCI that must handle multi-processors.

7.1.4.5 Multi-Target Percent

Indicate the percent of the CSCI that is specially written to run on
multiple targets.

C-53

e'

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA PORM INSTRUCTIONS

7.1.5. CSCI Reused (ode from Other Projects

7.1.5.1. Total Pre-existing

Enter the size of the pre-existing code completed and tested prior to thisCSCI development. If this CSCI is a totally new development, enter N/A.

7.1.5.2. Total Deleted

Enter the size deleted from an existing CSCI if this CSCI is reusing code
from another project. Otherwise, enter N/A.

7.1.5.3. Total Modified

Enter the total size modified. (Modifications made to the preexisting
code.) If this CSCI is NOT reusing code from another project, enter N/A.

7.1.5.4. Percent Re-Design Effort

Enter the amount of design effort required to produce the CSCI when
compared with all new development. If the CSCI is all new, the design
effort is 100%.

When rebuilding or reusing software, the design effort can account for
additional work required to understand existing designs. This may make re-
use more costly than it first appears.

Reuse of poor, undocumented, or obsolete designs can justify a design
effort rating of greater than 100%.

7.1.5.5. Percent Re-Implementation Effort

Enter the implementation effort to code and unit test the CSCI as compared
to all new implementation. Just like the design effort and test effort,
the implementation effort percentage code is determined by the anticipated
effort in comparison to a new effort. A complete implementation is 100%.

7.1.5.6. Percent of Re-Test Effort

Enter the test effort required to revalidate the CSCI when compared with
all new development. This includes all test effort after code and unit
test until the CSCI is ready for delivery to system integration with no
known liens on performance. This test effort does not include CSCI-to-CSCI
integration or hardware/software testing.

If the CSCI under estimation is all new, the test effort is 100%.

7.1.5.7. List of Projects which contained the Re-usable Code

List the projects which contained the code which is being reused.

%... ,..p-..... ,-..
.. -. I

COMPUTER SOPTARE CONFIGURATION ITEM SUMMARY DATA FORK INSTRUCTIONS

7.2. Function Point Data

Enter the following if an automated counting tool is available.

7.2.1. Number of Inputs

Enter the estimated or actual number of unique input types that change
data.

7.2.2. Number of Outputs

Enter the estimated or actual number of external outputs.

7.2.3. Number of Inquiries

Enter the estimated or actual number of input/output combinations where an
input causes or generates an immediate output.

7.2.4. Number of Data Files

Enter the estimated or actual number of logical files that are generated,
used, or maintained by the program.

7.2.5. Number of Interfaces

Enter the estimated or actual number of internal files passed or shared.

7.2.6. Total Number of Function Points

Enter the estimated or actual total number of function points.

7.3. Size/Complexity Data

Enter the requested counts if an automated counting tool is available.

8. Data Base Size (An automated counting tool may be needed)

8.1. Total Data Base Size

Enter the estimated or actual total data base size (in target machine
words).

8.2. Total Unique Data Items

Enter the estimated or actual number of total unique data items. A data
item is a field in a record.

8.3. Total Number of Records

Enter the estimated or actual total number of records (a record is a
heterogeneous set of data items in a named data group).

0 C-55

V - ~d*

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

8.4. Unique Data Types

Enter the estimated or actual number of unique data types (e.g. integer,
double, floating point,etc.).

9. Special Display Requirements

Special display requirements rate the amount of extra effort required to
interface with the user. Many programs require only simple inputs and
outputs (and no special display requirements).

Special displays are the user's window into the computer. (This is how the
users see what is happening and view results). It is often a video display
terminal of some sort, although it could be a hard copy printer and
keyboard or another device that allows the user to interact with the
software.

Indicate the special displays implemented in this CSCI.

10. Software Failure History (Errors by Phase)

Enter the number of requirements errors, the number of design errors, the
number of implementation errors, and the total number of errors for each
phase listed. Errors should be unique in every phase (i.e. an error which
is discovered in code and debug should not be in subsequent error counts
even though it may not be fixed yet). An error is a reported anomaly for
which a resolution is a change to the software or specification.

11. Software Change History by Phase

Enter the number of changes which occurred during each completed
development phase, the net increase/decrease in the total system delivered
source lines of code count and the net increase/decrease in the estimated
manpower for the software development effort.

If this information is available only at the system level, then answer
this question on the SOFTWARE DEVELOPMENT PROJECT SUMMARY DATA FORM only.

12. CSCI Development Attributes

12.1. Development Environment

12.1.1. Resource Dedication

Resource dedication is the availability of the virtual machine to the
software development project. If the machine is used by other
organizations of the company, then the availability probably decreases.
Even dedicated engineering resources may not be fully available due to
conflicts between teams, hardware developers, etc.

Enter the percentage of time 0 - 100% that the development computer will be
available to the CSCI development team.

C-56

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

12.1.2. Resource/Support Location

Resources are things like terminals or manuals. Support includes system
consultants, programmers language support, and development tool support.
Access may be limited by physical distance (terminals in other buildings,
consultants located in other states) or by p':ocedural constraints
(difficult procedures, or by personnel problems - uncooperative people).

Indicate the distance (miles) of the development resources and support from
the development site.

12.1.3. Security Level

Enter the level of security required for this CSCI (e.g. unclassified,
classified, secret, etc.).

12.1.4. Contract Type

Indicate the type of contract the CSCI was developed under.

CPFF - Cost Plus Fixed Fee
CPIF = Cost Plus Incentive Fee
FFP - Firm Fixed Price
FPIF = Fixed Price Incentive Fee

12.2. Specific Development Goals

Rate the items listed from 0 - 5 if they will affect the development of the
CSCI. The items are described in greater detail below.

12.2.1. Maximum Maintainability

The CSCI is designed and coded for easy maintainability.

12.2.2. Maximum Reuse of Pre-existing Software

As much code as possible is used from a pre-existing CSCI.

12.2.3. Maximum Reusability of CSCI Level Products

CSCI end-products are coded for re-use.

12.2.4. Maximum Reusability of TLCSC Products

Top-Level CSC Products are designed and coded to be reused.

C-57

5A& . .,"--- -

COMPUTER SOFTWARE CONFIGURATION ITEM SUMMARY DATA FORM INSTRUCTIONS

12.2.5. Maximum Reusability of LLCSC Products

Low-Level CSC Products are designed and coded to be reused.

12.2.6. Maximum Output Clarity

The CSCI's output (i.e. displays and reports) is developed for maximum
readability.

12.2.7. Maximum Use of Off-the-Shelf Software

The CSCI uses off-the-shelf software to the greatest extent possible.

12.2.8. Language/Tool/Method Evaluation

The goal is to evaluate the use of a specific language tool or method

rather than just developing software.

13. Special Ada Features

Enter the names of any special Ada language features which were/will be
explicitly avoided during the development of this CSCI.

If there are special Ada features used in the CSCI, indicate if there is a
development organization internal standard regarding the use of the special
features.

14. Special Problems or Comments

List any special problems or comments which are important to the
development of this CSCI, but have not been covered in this document.

.5S

-- 5

. .,5 - ..- "---- ,...., " ° ' ,€ .. ,,., , . - , € -. -" .-.-. '" - '"- '".- -- . .-
. "' ' ' # - •. '" . .,- -- '.-" -'.-'.. j.-'.-'

COMPUTER SOFTWARE SIZE SUMMARY DATA FORM INSTRUCTIONS

I. ,CI Name and Date

Enter the name of the CSCI and the date the form is being completed.

2. Development Contractor/Organization

ientify the company or organization which is actually performing the
'oftware design and development of this CSCI.

3. Project Name

Enter the name of the project which contains this CSCI.

4. CSCi Size Description

4.1. Size Format

Indicate the size format which most accurately describes the method used to
determine the size of this CSCI. SLOC is Source Lines Of Code. Note that
this size measure is only used for the Total Size, Comments and Doc.
(sometimes), Size Reused, Size to be Reusable, Pre-existing Code Size, and
Mods to Pre-existing.

-.2. CSC Size

List each CSC and its size values (list CSCI size if CSC sizes are not
available). If a size value does not apply to the CSC enter "N.A." If the
size values are available for more than one size format, fill out a
separate form for each size format available.

The number of words is measured using target computer words.

The pre-existing code size is the size of a pre-existing CSC that was
rebuilt or modified.

Mods to pre-existing is the number of lines added, deleted, or modified

in the pre-existing CSC.

Size reused is the size of a CSC reused without modification.

Size to be reusable is the amount of the CSC that was designed to be
reusable code.

Language is asked for because the CSC may not be in Ada. The code
could he reused from a project using another language, or this CSCI
could be designed in Ada and implemented in another language.

C-59

f'

RESOURCE EXPENDITURE DATA FORM INSTRUCTIONS

This form is designed to collect time-phased manpower data for the software
development project at the lowest level of detail available. Attach a copy
of the cost/work breakdown structure used to collect manpower data for
.software activities on this contract/development project.

1. Project Name

Enter the project name.

2. CSCI or Subsystem Name

If the resource expenditure data is for an identified CSCI, state the name
of the CSCI here and report expenditure data in accord with the WBS
elements identified in the row, "CSCI WBS." Six WBS elements are shown in
this row which breaks down the development labor into categories of design,
code and debug, test documentation, test, program documentation, and
verification and validation. If the CSCI resource data are not available
at this level, report the totals for these activities and note on the sheet
which if any of these activities may not be included in the resource
expenditure data.

If the resource expenditure data is for system level programmatic
activities necessary to the integration of two or more CSCIs within one
hardware subsystem, state the subsystem name and report resource
expenditure data according to the WBS elements identified in the row titles
"System WBS."

The software engineering may include, at this level, elements of program
management, configuration control. systems analysis, and CSCI integration
and test as Dart of the software subsystem development. Thus, the second
row of WBS elements allows for this resource expenditure data to be
reported apart from the efforts associated with developing each CSCI.

3. Latest Month of Actuals

Enter the latest month after contract award or project start for which
actual manpower data is available. This number should reflect the months
after the date for contract award entered in Item 4.1 for the Contract
Award milestone on the Software Development Project Summary Data Form.

4. Units of Manpower

Enter the units of measure used for the manpower figures, that is, man-
hours, man-days, man-months or man-years. Indicate the number of hours
that the unit is based on, if you are not entering man-hours.

In each of the subsequent rows enter the manpower expended during the month
after Contract Award indicated in the left-hand column. Space is provided
for up to five years of data. For ongoing projects enter the latest
estimate of resource requirements for those months for which actual data is
not available.

%. ,- -,-,- .- , % . -..

; :,.' l' - =' L m, a. ,_. ,., ;-O~z~..L,. "-.." ..J.:5'

GLOSSARY

Ada Tasking

An Ada construct in which a program unit may operate in parallel with
the main program.

Bottom-Up

A term usually used to describe design or testing strategies in which
the lowest level components are designed or tested first, then the
next level components, and so on, until the highest level component is
designed or tested. For dynamic bottom-up testing, drivers for the
individual or set of low level components must be built in order to
provide their input and observe their output.

Central Processing Unit (CPU)

The CPU is the computer's main processor, as opposed to other
potential co-resident special purpose (e.g., math handling, graphics
handling, etc.) processors.

Code and Unit Test (CUT) Milestone

The milestone when the software coding and unit testing is completed,
and the software is ready for integration.

Configuration Management

Includes task configuration identification, change control, configu-
ration status accounting, and configuration auditing to ensure proper
configuration control.

Contract Award

The point when the development is actually funded or the go-ahead for
development is received. Some requirements work may have been done
prior to this time, but not necessarily.

Correctness

Correctness is a software quality factor which indicates the degree to
which software satisfies its requirements.

Critical Design Review (CDR)

A review conducted for each configuration item when the detail design
is essentially complete to determine if the detail design satisfies
the requirements established in the specification and to establish the
exact interface relationships vith other parts of the system.

-6

| c-61

Cross-Assembler

A computer program that accepts symbolic instruction mnemonics for a
selected target computer and generates target computer machine code
while hosted on another computer. A cross-assembler thus allows code
written on one computer to be assembled on another. A symbolic
language translator that operates on one type of computer to provide
machine code for another type of computer.

CSCI (Computer Software Configuration Item)

An aggregation of computer software which satisfies an end-use
function and is designated for configuration management.

Data Base

In its broadest sense, a data base is the complete collection of
information (machine-readable data--both external data files and
internal, hard-coded data items--and written documentation) associated
with a software program. Generally, data base refers to a specific
set of machine-readable data files.

Derived Type

An Ada object type whose operations and values are taken from an
existing object type.

Design/Code, Walkthroughs/Inspections

A step-by-step, detailed examination of design/source code by a small
group of qualified personnel.

Development Staff

Software design and software programming personnel.

Development Test and Evaluation Milestone

The milestone when software has been completely integrated with other
software and hardware, and has passed system tests.

Development Test and Evaluation (DT&E)

Test and evaluation that focuses on the technological and engineering
aspects of the system or equipment items.

Efficiency

Efficiency is a software quality factor indicating how productively
the software uses its computer resources.

C-62

-- .V I - - .77 j . .

a

Formal Qualification Test (FQT)

A formal test conducted in accordance with approved test plans,
descriptions, and procedures after a CPCI has been integrated to
validate that each function of the CPCI satisfies the specified
software requirements and applicable interface requirements.

Formal Test

A test which is conducted in accordance with test procedures approved
by the procuring activity, is witnessed by an authorized represent-
ative, and is documented in a test report for procuring agency review.

Function Points

Functions points is a measurement and calculation technique used for
estimating productivity. The technique calls for classifying and
counting five types of functions: external inputs, external outputs,
logical internal files, external interface files, and external inquiry
types.

Functional Configuration Audit (FCA)

The formal examination of functional characteristics test data for
a configuration item to verify that the item has achieved the per-
formance specified in its functional or allocated configuration
identification.

Functional Specifications

A specification of a component as a set of functions defining the
output for any input. The specification emphasizes what the program
is to do, rather than how to do it. However, an algorithmic specifi-
cation can be considered functional if it is not used to dictate the
algorithm to be used. Describe a system in terms of its principle
functions and their interrelationships; i.e., the functional
relationships of the parts.

Generics

Generics are Ada subprograms that can process parameters of more than
one type. The classes of parameters that are acceptable to the
subprogram are specified in a generic clause. Before using a generic
subprogram, the types that it is to process are specified during
generic instantiation.

HIPO (Hierarchy Plus Input-Process-Output)

A graphical technique that defines each component by its transform-
ation on its input data sets to its output data sets. This part

C-63

• - - - .- .- -.K

a, Is e h ie r Ir~ - 1na'
I., V.r ! -,

*~ 11 il . t s lui~ : ict. n r-, ~ub fu
E- .~. ~t.)"'gt: 1 1 zniIaL ro the block diagrn"

! e r rr p ru ts -I *purs and 'he processes jo1-ir',.

S ~. z~ 'res .'put isa .4raphic design '

i a..g: in' dEs;(7r .'e tun. 'i' rnc '.-irr- ct *he i iput
:E- -; sh:1 i .tn ubsystem, o: cra f incr.onia1I.

t ,n t ionI ia t i per for ms, ansx.ei ng !the ,!es or. ''

e. i o 'Since -ese diaigrams are visual, they are easier ~
L t ci TOS L lo, ujint a Iion ,h ich is rlatrat i e. A i !ncugr

t ie ano the r g ca,,ri des ign t e(hn ique , t ney sho.) rgan-
t * gic i.- c-ntrast to function.

c !tor

r! I LOgrt, is i rt simulate the execution characterist-,s ot
a uter 5I~a se..uen-e o! instructions of a host computer.

hc ir, t r :in s'm,-.3zor provides hit for-bit fidelity with the
e S u's "Ia! WO,.1d ue Vrod.uced Lv the target computer following tne

.ations and iiial CO~tdit ions.

t-c -xr with the tunition-pcints technique, an inquiry is a uniaue
r comtinatinn, Ywhere an input causes and generates an

-* tpu!, i cc xterna1 ir -ir ,pe.

- .. :tc t ,es~tibing the level ot cnv,'r
i'e i(csb to cperat I ons and data.

t t tutcio. ,it (hniquje, drn ex~ternal) 1 .1!
* ~ - -- or sh reO ff IPP p li(3! o s.

d I f, f fac t or dh i rh i *c a es no.
C * ~,stems

ICI

1, at i. e nha r enen -:a n

V '

Maintainability

Maintainability is a software quality factor which indicates the
degree of effort it takes to locate and fix an error. High maintain-
ability means a low degree of effort.

Monitor

A monitor determines which of two or more processes competing for
control, in order to execute has priority. It allows that which has
priority to take control and execute and places the other process(s)
on a queue to await their turn to take control and execute.

Operational

The status given a software package once it has completed contractor
testing and it is turned over to the eventual user for use in the
applications environment.

Operational Evaluation

The analysis of a system operating in its real-life environment.

Operational Test and Evaluation (OT&E)

Testing designed to give results related to the service environment in
which the systems will be operating. It is accomplished by service
operational and support personnel of the type and qualification of
those expected to use and maintain the equipment. OT&E relates not
only to technical suitability, but also operational effectiveness az;d
suitability, including maintainability, reliability, training, and
logistics.

Operational Testing

Performing tests on software in its normal operating environment.

Overloading Operator

Overloading an Ada operator means that it has been given more than
one meaning or function. The particular meaning of the overloaded
operator depends upon the type it receives at a given time.

Peak Staff

The maximum number of project and development staff during f-ll scale

development.

Physical Configuration Audit (PCA)

The formal examination of the "as coded" configuraicn of a CPCI
against its technical documentation in order to establish the initial
product configuration identification.

S265

Portability

Portability is a soft are qualiv factor ;hich reflects the maximum
effort requited to transfer an implemented 57'stem from one hardware or
software system environment to another.

Preliminary Design Review (PDR)

A review prior to the start of the detailed design process to evaluate
progress and technical adequacy of the selected design approach, to
determine the design compatibility with the performance requirements
of the CPCI development specification, and to establish the existence
and compatibility of the interfaces between the configuration item and
other elements of the system.

Preliminary Qualification Test (POT)

A test conducted during the integration of a CPCI to evaluate the
performance of those CPCI functions which are critical, as determined
by time-critical or performance-critical requirements.

Procedural Specifications

A specification of a component in some algorithmic manner (e.g., using
PDL or a flowchart). The specification says how the program is to
work.

Program Design Language (PDL)

A design tool used to facilitate the translation of functional
specifications into computer instructions. Intended to be comparable
to the blueprint in hardware, programming design languages strive to
communicate the concept of the software design in all necessary
detail, using a formal or structured version of English.

Program Librarian

A program librarian is someone who is responsible for controlling all
of the software and technical documentation pieces of a project. This
role is usually associated with configuration management.

Program Management

Includes direct labor software management. It does not include
hardware management highest level program management, etc.

Program Support Library

A software system which provides ronls to nrganize, implement and
control software development.

.k4'

w- •. Pv~ ~ ..-- ~ vv P- 9. j p ~ ~ p ppw .

Proof of Correctness

Proof of correctness is a software testing technique in which the
program is treated like a theorem. Usually the proof consists of
symbolically evaluating all of the expressions from an input statement
to an appropriate output statement, assuming a given input value.
Alternatively, the proof can start from an output statement and
evaluate the expressions backwards to an appropriate input statement.
The purpose is to prove that the program both terminates and produces
the expected output for a specific input domain.

Quality Assurance

Includes the quality engineering functions (ensuring that quality is
built into the product and developing appropriate standards), and
quality control inspection and audits.

Rapid Prototyping

Software rapid prototyping involves quickly building a system or model
of the system, usually for the purpose of demonstrating feasibility,
clarifying stated requirements, or trying out design concepts. The
prototype may not be the basis of the eventual system (i.e., a throw-
away, once the purpose is served) or it may be a skeleton of the
eventual system.

Record

In the context of Ada, a record object type is made up of components
that usually have different named types or subtypes.

Reliability

Reliability is a software quality factor which indicates how
consistently an implemented system performs its intended function
for its specified input domain.

Requirements

A system specification written by the user to define a system to a
developer. (A statement of what the user (purchaser) expects the
system to include among its capabilities.)

Requirements Analysis

Analysis performed to assure that the developer's software
requirements are completely and correctly defined. As part of this
activity, analysts check each requirement for consistency with other
requirements and trace software requirements to their source.

C-67

-.. .

Requirements Specification

Translation of an operational (or application) requirement into a
statement of the functions to be performed.

Requirements Specification Language

A language used to specify a software system which is sufficiently
formal in the mathematical sense, that conclusions concerning
consistency and completeness may be drawn from the system's
specifications expressed in such languages.

Reusability

Reusability is a software quality factor which indicates how easily
a software unit or system can be used in another application.

SLOC (Source Lines of Code)

The SLOC represents the number of "card-image" lines of compilable
source code. It does not include comments; they are not compiled.
It does include data declarations. If a single programming statement
takes more than one line to express, then each line is counted
separately. However, if more than one programming statement is
entered on the same line, each statement is counted as a line (since
a compiler treats the statements separately).

Software Design

4 This includes the definition of the software architecture to implement
the software requirements, the preparation of architectural design
specifications, design reviews, the layout of physical data struc-
tures, interfaces, and additional design details to implement the
requirements.

Software Programming

This includes the actual coding, unit testing, maintaining appropriate
unit documentation, and test driver development for the individual
software modules/units.

Software Specification Review (SSR)

A review to demonstrate to the contracting agency the adequacy of the
Operational Concepts Document, Software Requirements Specification,
and, if applicable, Interface Requirements Specification(s). Specific
details regarding the SSR process are contained in MIL-STD-1521.

Software Test

Includes preparing test plans arvd pin-edures, i.nning rests, and
preparing test reports. Thi :ncl de sott%-are telated test onl,.

U

-. .. . e,. * 12%
: , ... , . .. °., - . .,, ..,- ,.. , - .. ,. - /- o -* * n -. *- - / -

-P-

Specification-Driven Testing

Input test data derived for the purpose of testing each specified
requirement or design element is known as specification-driven
testing.

Staffing Rate

The rate at which people can be added to the project per year.

Static Analysis

The analysis of a program without executing the program. Specific
methodologies include desk checking, peer code review, and structural
analysis.

Structure-Driven Testing

Using input test data derived for the purpose of testing each logical
path in a program.

Structured Design

Design technique that involves hierarchical partitioning of a modular
structure in a top-down fashion, with emphasis on reduced coupling and
strong cohesion.

Structured Code

Structured code usually indicates that only well-behaved control
constructs are used. This means that logic is forward flowing and
each control block has a single entry (and possibly a single exit).
In Ada, all control constructs, except the goto statement, represent
structured code. The use of the exit statement, however, does
introduce a multiple exit construct for the loop control block.

Structured Programming

The activity of programming with a limited set of constructs. The key
constructs in structured programming are: (A) each program is allowed
only one entry and one exit. (B) only three basic control structures
are sufficient: do-while, if-then-else, else, and sequence. (C)
other sequences are sometimes allowed, the most popular ones being
do-until and case. (D) The restricted constructs are often augmented
with the following practices: * hierarchical and modular block
structures * limits on the size of modules * indentations and
formatting a system design, implementation and computer programming
technique encompassing the following concepts: (1) Top-down design in
which overall program logic is designated first, each major component
before any of its subcomponents, etc. (2) Chief programmer team
managerial approach to program production incorporating as a nucleus a
chief programmer, a back-up programmer, programming secretary and

C-69

defined relationships among any additional specialists. (3) Top-down
programming in which overall program logic is coded and tested before
any of its subcomponents, etc. (4) Programming using only the three
logic structures of a simple sequence of two or more operations; a
conditional branch to one, or more operations and a return (if A, then
B, else C); and a repetition of an operation while a condition is true
(do-while). (5) Programming with limited or no "Go To" logic. (6)
Picture-on-a-page technique in which the overall progrm logic is
represented on the first page, each major component is represented on
a subsequent page, each subcomponent on a still later page, etc.

Structured Requirements Analysis

An analysis technique that involved hierarchical partitioning of the
requirements in a top-down fashion, with emphasis on functionality.

System Design Review (SDR)

A review conducted when the definition effort has proceeded to
the point where systems requirements and design approach are more
precisely defined. The review ensures that there is a technical
understanding between the contractor and the procuring agency on the
system segments defined in the system specifications and the con-
figuration items defined in the configuration item performance
specifications.

System Requirements Review (SRR)

A review -nndicrted when a significant portion of the system functional
requiremen- have been established to determine the adequacy of the
ronrrarorr s efforts in defining system requirements.

Terminal Response Time

Terminal response time is the elapsed wallclock time from the moment
the return or enter key is hit until a response is shown on the
terminal's screen.

Testability

Testability is a software quality factor which indicates the maximum
effort required to ensure that the system performs its intended
functions.

Top-Down

Top-down is the reverse design or testing strategy of bottom-up. The
top-down approach calls for designing or testing the highest level
components first, and working downward toward the lowest level compo-
nents. In top-down testing, stubs (i.e., nearly vacuous components
that merely model the actual components) must be built in order to
simulate the values that the lower level components would return, if
invoked.

C-70 S

x-

I.

Turnaround Time

Turnaround time is the elapsed wallclock time involved in a particular
activity. If compilation turnaround time is of interest, it would be
the elapsed time required from the moment the source code is made
available to the compiler until an indication is given that compi-
lation is complete.

Usability

Usability is a software quality factor which indicates the level of
human engineering requirements for the system. These requirements
include the maximum time and effort required to learn the human
interface, prepare input, and interpret output of the system.

Validation

The act of confirming that the design specifications and contractual
commitments have been met and that operational capabilities of the
ship/systems have been demonstrated to be satisfactory.

Virtual Machines

The complex of software and hardware that the software being developed
calls upon to accomplish its tasks.

Walkthrough

A walkthrough is a technique of desk-checking a completed item. It
usually refers to the manual analysis of source code as a review
check. It is often undertaken by an inoependent analyst, not the
author of the code.

I

I

C-71

....

.

I.

:.'

a'

',

APPENDIX D

DATA COLLECTION PLAN

D-1

.1

INTRODUCTION

This plan defines both the general approach and specific require-

ments for the Ada software data collection effort. This effort will

provide more knowledge about the actual costs, schedules, and development

environments of Ada-related projects and expand the ESD/ACC software data

base.

Data will be collected using the data collection forms created

during this research study (Appendix C of the Task One ESD Ada Software

Cost Study). These forms are an enhancement of the software data collec-

tion forms currently being used by ESD. They are designed to collect the

data requested by the original forms, and additional data that are felt to

be of value in future modelings of the costs and schedules of Ada software

projects.

The forms have also been somewhat reordered to group data that apply

to a specific phase or topic. The reordering makes the individual forms

more flexible in their ability to be tailored to a particular software

development.

The data to be gathered will help calibrate existing software cost

models and provide guidance for potential new model development. Addi-

tionally, the data will provide insights into Ada project management.

Actual data collection will be performed during SPO contacts, on-

site interviews, document reviews, and evaluation. The on-site data

collection will ensure that data are collected consistently and completely,

within the definitions and scope intended. The data will be collected

according to the procedures outlined in CR-0136, "Procedures for Future

Data Collection and Update," a document produced under Tecolote's ESD

Software Database Expansion task.

D-1

%V"

The Tecolote data Lollection will be coordinated with the two SBIR

contractors that will be collecting similar data in order to develop an Ada

cost model. ACC will be the focal point of the coordination. The purpose

of the coordination will be to ensure that we all operate as a team and

provide the government with the best possible return for its research

dollar.

Candidate projects that were identified during the research study

are identified in this plan.

D4 '

.

. * ..

-S- JL,222.d.

3

SCOPE OF THE DATA COLLECTION EFFORT -

Candidate software development projects must be Ada-related, either by

using Ada as the implementation language, using Ada tools and methods, or

as prior non-Ada implementations of current Ada developments (such as the

previous implementation of a simulator that is currently under reimplemen-

tation in Ada).

Both large and small Ada-related programs are included as candi-

dates, although more large projects are preferable. Actual developments,

with typical personnel and functional deliverables, are also highly desired

candidate project traits. Data from several experimental projects (highly N

motivated teams of experts who are constantly being measured) will be

collected. This data will be specially identified to ensure they are used

with caution in cost model calibration.

D.

I,

D-5 I'
.. .9

-.

DATA COLLECTION APPROACH

Most data collection will be performed on-site, at the developer

facilities. Additionally, some data will be collected from SPOs (or other

appropriate organizations for non-Air Force projects), both to save time

and to determine how it correlates with detailed project data. Experienced

software professionals/cost analysts will perform the on-site data collec-

tion. This will ensure experimental project shortcuts are identified and

reduce the potential of contractors providing unreasonable data.

Data collection will be performed as follows:

* Arrange visits with program offices.

e Prepare program overviews before on-site visits.

* Collect initial data.

9 Validate initial findings.

* Clean up initial data.

Additionally, on incomplete projects where data have been collected,

arrangements for final data to be collected upon project completion will be

made. This is in accordance with the procedure for the Software Data Base

Expansion.

These steps are detailed in the following sections.

3.1 ARRANGE VISITS WITH PROGRAM OFFICES

SPO contacts will be made as a matter of courtesy, to help ensure

contractor cooperation during data collection and as a primary source of

project information. First we will contact the SPOs via letter, intro-

ducing ourselves, explaining the project, and requesting cooperation in the

data collection activity. The letter will be written and signed by the

appropriate ACC representative. This will be followed with a telephone

contact. Over the telephone, we will reintroduce ourselves, explain the

%4 D-6

.°..

data collection goals, and clarify the information contractors should

assemble before our on-site visits.

The usefulness of the data collection to the Air Force and the SPO's

mission will be emphasized. We will refer SPO personnel to our Air Force

contact if necessary to resolve any concerns. Additionally, we will inform

the SPOs of our non-disclosure agreement with ACC and communicate our will-

ingness to sign additional non-disclosure agreements.

3.2 PREPARE PROGRAM OVERVIEWS

These program overviews will ensure the scope and goals of identi-

fied projects are understood before on-site visits. Project case files

will be created to ensure data is well organized and that researchers have

project familiarity before the on-site contractor visits.

3.3 COMPILE PROJECT CASE STUDY FILES

A case study file will be prepared for each candidate program. These

files will be updated as additional information becomes available through-

out the data collection process. The following information will be

included as available:

9 Program name and major hardware elements

e Program managers

* Program mission/Application type

. Development schedule

9 Related programs or projects

* Program goals (production, experimental, etc.)

e Contractor's Ada experience level

* Contractor and subcontractor names

* Ada environment summary (such as Rational or VAX)

* CSCI names, numbers, and sizes

* RDT&E funding profiles

" History of program modifications

9 Project-level data collection forms

* Other pertinent data

D-7

*.7

WI- -%V -oi i~_ ."~l _T . -"V .

L

3.3.1 PROGRAM OVERVIEW INFORMATION SOURCES

The sources that will be accessed to develop the program overviews

are:

* Program management directives (ESD or others when applicable

to the project).

. RDT&E summaries of budgetary submits.

* ESD or other applicable cost library documents dealing with

recent cost estimates.

* Telephone contacts with knowledgeable ESD, MITRE, and other

appropriate personnel.

9 Telephone conversations with SPOs or other Government

personnel.

* Computer Resource Integrated Support Plans (CRISPS) where

possible to provide major software information.

3.3.2 VISITS TO SPO TO COLLECT PROJECT FILE DATA

If visits to SPO are required to obtain the requested data, we will

attempt to arrange them to minimize the number of trips. These visits will

be made if SPOs cannot provide necessary project file data via mail, or if

we feel a visit will allay SPO misgivings about this effort.

3.4 ARRANGE CONTRACTOR VISITS

Each specific contractor will be contacted after the appropriate SPO

has approved the data collection. During the contractor contact, we will

set appointment dates. Appointments will be coordinated so we collect data

on projects that are farther along the development cycle first. This will

give other projects more time to develop before we do data collection. We

will plan one to two weeks on-site per project, depending on the project

size, development cycle phase, contractor cooperation, and likelihood of

collecting meaningful data.

D-8

_ = _ . . . i - - -- m m a i i i a - - -- m - : +_ -- - _ -

Second visits may be recommended for projects that are useful data

sources where more actual (rather than estimated) data or results of recent

changes are deemed valuable during the first visits.

3.4.1 CONTRACTOR PROPRIETARY DATA SECURITY

Non-disclosure agreements can be executed with specific contractors

if needed. Some entries in the form may be sanitized to ensure contractor

confidentiality. The contractor will be asked to indicate which data are

proprietary. The Air Force will receive a master data set with original

data.

3.4.2 DISTRIBUTION OF SANITIZED DATA

We recommend ESD/ACC offer participating contractors sanitized ver-

sions of the data collected from all projects during this task. We believe

this will provide an extra incentive for cooperation. If ACC agrees, we

will include this offer in our initial contacts. We will assure contrac-

tors that only sanitized data will be distributed.

3.5 COLLECT DATA AT CONTRACTOR SITES

3.5.1 LOCATE DATA SOURCES ON-SITE

We will identify the following personnel and data sources:

9 Program managers to provide the project level information,

goals, personnel attribute information, and to coordinate with

other project personnel.

" Software CSCI-level managers to provide more detailed size,

difficulty, personnel, and environment data.

e Software engineers involved with each CSCI who can provide us

with the detailed data and assist in our independent document

evaluation.

-"Quality assurance personnel, testers, and others who have

performed independent project analysis and reviews.

D

I '- ..' - ,-.- -.- ., - -.

9 Actual plans, software specifications, manuals, listings, unit

development folders, and other information for review.

3.5.2 INTERVIEW APPROPRIATE PERSONNEL AND REVIEW DOCUMENTATION

3.5.2.1 Program Manager Interviews

Our first contractor site interview will be the program manager for

one to two hours, filling in top-level project data, verifying any unclear

information within our project file and gaining commitment for arranging

meetings with CSCI level managers. If the project is too large to allow

data collection on each CSCI, we will identify the most appropriate CSCIs

for data collection.

3.5.2.2 CSCI Level Manager Interviews

Appropriate CSCI level managers will be interviewed next. Each

initial interview will take about two hours. During these interviews, we

will acquire more detailed size, difficulty, personnel, and other data.

Additionally, we will coordinate our interviews with software engineering

and technical personnel primarily through these CSCI level managers. We

will interview CSCI level managers again to fill in any missing data or

resolve inconsistencies in data obtained from technical personnel.

3.5.2.3 Technical Personnel Interviews

During these technical reviews, we will collect detailed CSCI level

data. Additionally, we will validate any questionable data received from

other interviews. The combination of software engineers actually doing the

work, testers, quality assurance, and other personnel should provide us

with a well-rounded, accurate picture of development.

1.5.2.4 Review CSCI Documentation

During our documentation teviews, we will validate information

received from project personnel. Additinnallv, we vill review documents

for additional insights. For example:

ILAI
*4** ** 1I. .

4.... -. *..**" -*

* The Software Development Plan review should provide signifi-

cant data.

" Design specification reviews should show the use of design

level tools and methods.

" Code reviews of chosen packages should provide indications of

Ada conventions used.

" Unit development files may provide a wide variety of

information.

" Test plans, procedures and reports (and software problem and

change reports) may provide information regarding the ease of

test and number of errors.

3.5.3 RECORD DATA IN DATA COLLECTION FORMS

Most data will be entered into the collection forms during the

interviews and reviews. Some details may be filled out in between inter-

views to ensure respondent's time is optimized.

After each interview, the major data sources will be noted.

Post-interview reviews by data collection personnel may highlight

areas where more data should be captured or where clarification of incon-

sistencies is required. If so, we will attempt to clarify the information

while on-3ite.

3.5.3.1 Estimated Data Collection Versus Actual

Since project data will be collected at differing points within the

development cycle, some data may be estimated, rather than actual. In

those cases where a range of data is appropriate, we will collect the mini-

mum, most likely, and maximum estimates of these data. The minimum and

maximum case estimates will be verified with both management and technical

personnel when appropriate. All estimated data collected will include

information identifying the source.

D-11

, 3.5.3.2 Data Sanitizing

If desired, data will be sanitized after the on-site ::'

completed. Sanitation will remove information alloying specific prn'e '

identification. In rder to allay contractor concerns about adeqia'

sanitization, a completed copy of the data collection forms will be pr,,

vided to the contractor. The contractor will then indicate which data are

proprietary.

3.6 VALIDATE FINDINGS VIA INDEPENDENT PROJECT OR SPO INTERVIEWS

After the data collection forms are completely filled out, we .ill

attempt to verify the accuracy of high-level data independent of the con

tractor. Validation will concentrate on areas that appear to be outside of

norms, overall project goals, and the specific Ada cost drivers issues and

impacts.

3.7 CLEAN UP DATA AND TEXT DEFINITION

During this step, staff will ensure forms are neatly filled in vith

out blanks, that the cross-referencing between forms is appropriate, and

that any textual descriptions within the forms are complete, cohesive -en

tences. The forms will be suitable for a clerk to enter the data int,,, a:.

automated data base. If we feel it will add clarity, we will: (I) n C

a second copy of the form with relevant text or qualifying informationr:; !

(2) add a separate sheet of caveats at the end of the form.

..- , ,--

. - - . " - -. - -.*. .. - . - -j - 1 W W

CANDIDATE ADA PROGRAMS

The following lists candidate programs for data collection. To

date, project sources have been reluctant to provide much information with-

out a formal introduction from the Air Force. The usual reason given was

*the high visibility of the early Ada projects and the desire to minimize

'he number of requests for information. There is a concern that the number

of potential data requests can interfere with the Ada projects' progress.

Thus, when ACC approves of this data collection plan and provides a letter

of introduction, the state of the various projects can be assessed and a

priority list can be generated.

There are many non-Air Force projects on the project list, and they

should be considered for data collection to ensure we obtain as much infor-

marion on Ada costs as possible. Hence, ACC should explore the possibility

'If having the AJPO support this effort with their own cover letter. Addi-

tional support could come from RADC, SSCAG, and other high-level organiza-

rions. The more official backing the project has, the easier it will be to

gain the cooperation of government managers and private contractors.

Once the data collection task begins, the SPOs' and contractors'

willingness and enthusiasm for data collection will be factored into the

andidate list. Data relating to previous implementations of current Ada

ievelopmens will be given priority to contrast with the new Ada systems.

A few non-Ada projects are in the list. These are the original

fin-tions that are being reimplemented in Ada at SIM SP0.

We are -,ill working to identify additional projects. As more

int,)rmation he~omes available, it -ill he provided.

"d

J

V

2.

4.1 ASD/SIMSPO REBUILD - BOEING

Summary: Rebuild of existing simulator for Ada
data collection purposes.

Program Manager: Bill Lloyd

Telephone Number: (513) 255-7177

Project Phase: Past PDR

4.2 ASD/SIMSPO REBUILD - PERTEC

Summary: Rebuild of existing simulator for Ada data collection
purposes.

Program Manager: Bill LLoyd

Telephone Number: (513) 255-7177

Project Phase: Past PDR

4.3 NSA MINSTREL - GTE ROCKVILLE

Summary: NSA project developed by GTE. Originally targeted for
language development. Language was changed to Ada
project after contract award. Ada training is
currently underway.

Telephone Number: (301) 294-8603 ???

4.4 ASD ECSPO 1750 COMPILER

Summary: Compiler with real time, size and performance
constraints under development. Project is in trouble.
SPO personnel asked that we not collect data.

Program Manager: Robert Earnest

Telephone Number: (513) 255-5945

4.5 ROME AIR ADA-INTEGRATED ENVIRONMENT

4.6 MILSTAR GROUND TERMINAL - LOCKHEED

Program Manager: Colonel Lindberg

D-14

4.7 NSA - GTE MOUNTAIN VIEW

Summary: 10,000 lines developed to NSAM standards. Recently
completed under budget.

Program Manager: Margaret Meseimans (GTE Mountain View)

Project Phase: Complete

4.8 SIG ADA EXPERIMENT

Program Manager: Tony Alben (TRW Contact)

Telephone Number: (213) 535-1624

Project Phase: Completed

4.9 WORKSTATIONS - INTELLIMAC ROCKVILLE

Summary: Developed Ada environment workstations.

Program Manager: Dave Dikel or Mr. Richardson

4.10 GOULD

Program Manager: Bob Thibaeau (Gould Fort Lauderdale)

4.11 JPL

Program Manager: Ed Colbert (Absolute Software Consultant)

Telephone Number: (213) 545-0567

Project Phase: Various

4.12 SofTech

Summary: SofTech developed the Ada Language System (ALS), which
is a compiler and APSE for the VAX family. The ALS was
sponsored by the Army. SofTech also developed the Ada
Compiler Validation Suite (ACVS), a set of about 4000
small Ada test programs.

4.13 MAGNAVOX FORT WAYNE

Summary: Ada project was developed to assess 2167 Ada impacts.

I

D- 15

4.14 WIS PROJECTS

The government contact is Lt. Jeff Siegal.

4.15 PHASE 2 SECURE OPERATING SYSTEM - TRW

4.16 ARMY ALBUQUERQUE PROJECT

4.17 MILSTAR (IBM PORTION)

4.18 NASA Langley

Summary: Note Ed Dean has been out of town for over a month. He
is now back. Galorath made one contact and should make
another to get project information.

4.19 CCPDSR

Summary: About 200-300K lines replacement

Program Manager: ESD Steve Patey or Colonel Yonkers

Project Phase: The RFP will be released in September. We were

asked to make contact then.

4.20 LIST OF ADA PROJECTS IN THE ADA INFORMATION CLEARINGHOUSE NEWSLETTER

Ada-AIMES
Ada Compiler System (ACS)
Ada Designed/x.25/VLSI/VHSIC Chip
AdaEDIT
Ada Language System
Ada SAM Missile Simulation
Ada Test Tools
Advanced Field Artillery Tactical Data Systems (AFATADS)
Air Force Support to MEECN
Automated Test Procedure Generator for Ada
Concurrency Control Method for Database Indices (MU)
Design Evaluation Tool (DET)
E-48 Message Processor System
Flexible Ada Simulation Tool (FAST)
Flir Mission Payload Subsystem (FMPS)
GRAMACT
Intermediate Forward Test Equipment (IFTE)
Maneuver Control System (MCS)
Mobile Information Management System (MIMS)
MSOCC Ada Study
NOSC Tools

D-16

Regency NET
RELATE/3000, Project Alert
Relational Database System
Single Channel Objective Tactical Terminal (SCOTT)
817 Fuze Tester

4.21 ADA JOINT PROGRAM OFFICE

AJPO has responded to our request for information on projects with a

list that includes project names, descriptions, sizes, and points of con-

tact. AJPO requested that we restrict distribution of this list, so it is

not included in this report. ESD/ACCR has a copy of the list.

'ft

5%

S.-

S

-I

4 1%

-- I

S

4*** .~

I
.4

'V.

U'

.1'

.4-

4.

-A

'4-.

'4.

b-.4

.1*
*45

-U

'4

S

,~** 4A~* - . ~ * .,~ . -
4 . 4.............***.* S...

